RUS  ENG
Полная версия
ЖУРНАЛЫ // Проблемы анализа — Issues of Analysis // Архив

Пробл. анал. Issues Anal., 2019, том 8(26), выпуск 3, страницы 3–15 (Mi pa267)

Approximation properties of some discrete Fourier sums for piecewise smooth discontinuous functions

G. G. Akniyev

Dagestan Federal Research Center of the Russian Academy of Sciences, 45 Gadzhieva st., Makhachkala 367025, Russia

Аннотация: Denote by $L_{n,\,N}(f, x)$ a trigonometric polynomial of order at most $n$ possessing the least quadratic deviation from $f$ with respect to the system $\left\{t_k = u + \frac{2\pi k}{N}\right\}_{k=0}^{N-1}$, where $u \in \mathbb{R}$ and $n \leq N/2$. Let $D^1$ be the space of $2\pi$-periodic piecewise continuously differentiable functions $f$ with a finite number of jump discontinuity points $-\pi = \xi_1 < \ldots < \xi_m = \pi$ and with absolutely continuous derivatives on each interval $(\xi_i, \xi_{i+1})$. In the present article, we consider the problem of approximation of functions $f \in D^1$ by the trigonometric polynomials $L_{n,\,N}(f, x)$. We have found the exact order estimate $\left|f(x) - L_{n,\,N}(f, x)\right| \leq c(f, \varepsilon)/n$, $\left|x - \xi_i\right| \geq \varepsilon$. The proofs of these estimations are based on comparing of approximating properties of discrete and continuous finite Fourier series.

Ключевые слова: function approximation, trigonometric polynomials, Fourier series.

УДК: 517.521.2

MSC: 41A25

Поступила в редакцию: 21.11.2018
Исправленный вариант: 24.09.2019
Принята в печать: 24.09.2019

Язык публикации: английский

DOI: 10.15393/j3.art.2019.7110



Реферативные базы данных:


© МИАН, 2024