RUS  ENG
Полная версия
ЖУРНАЛЫ // Проблемы анализа — Issues of Analysis // Архив

Пробл. анал. Issues Anal., 2019, том 8(26), выпуск 3, страницы 16–23 (Mi pa268)

Constructive description of function classes on surfaces in $\mathbb{R}^3$ and $\mathbb{R}^4$

T. A. Alexeevaa, N. A. Shirokovba

a National Research University Higher School of Economics, 3A Kantemirovskaya ul., St. Petersburg, 194100, Russia
b St. Petersburg State University, 28 Universitetsky prospekt, Peterhof, St. Petersburg, 198504, Russia

Аннотация: Functional classes on a curve in a plane (a partial case of a spatial curve) can be described by the approximation speed by functions that are harmonic in three-dimensional neighbourhoods of the curve. No constructive description of functional classes on rather general surfaces in $\mathbb{R}^3$ and $\mathbb{R}^4$ has been presented in literature so far. The main result of the paper is Theorem 1.

Ключевые слова: constructive description, rational functions, harmonic functions, pseudoharmonic functions.

УДК: 517.5

MSC: 41A30, 41A27

Поступила в редакцию: 25.08.2019
Исправленный вариант: 22.10.2019
Принята в печать: 16.10.2019

Язык публикации: английский

DOI: 10.15393/j3.art.2019.6890



Реферативные базы данных:


© МИАН, 2024