RUS  ENG
Полная версия
ЖУРНАЛЫ // Проблемы анализа — Issues of Analysis // Архив

Пробл. анал. Issues Anal., 2019, том 8(26), выпуск 3, страницы 73–82 (Mi pa273)

Эта публикация цитируется в 7 статьях

On solvability of the boundary value problems for harmonic function on noncompact Riemannian manifolds

A. G. Losev, E. A. Mazepa

Volgograd State University, 100 Universitetsky pr., Volgograd 400062, Russia

Аннотация: We study questions of existence and belonging to the given functional class of solutions of the Laplace-Beltrami equations on a noncompact Riemannian manifold $M$ with no boundary. In the present work we suggest the concept of $\phi$-equivalency in the class of continuous functions and establish some interrelation between problems of existence of solutions of the Laplace-Beltrami equations on $M$ and off some compact $B \subset M$ with the same growth "at infinity". A new conception of $\phi$-equivalence classes of functions on $M$ develops and generalizes the concept of equivalence of function on $M$ and allows us to more accurately estimate the rate of convergence of the solution to boundary conditions.

Ключевые слова: Riemannian manifold, harmonic function, boundary-value problems, $\phi$-equivalency.

УДК: 517.95

MSC: 31C12

Поступила в редакцию: 14.08.2019
Исправленный вариант: 30.09.2019
Принята в печать: 23.09.2019

Язык публикации: английский

DOI: 10.15393/j3.art.2019.7050



Реферативные базы данных:


© МИАН, 2024