RUS  ENG
Полная версия
ЖУРНАЛЫ // Проблемы анализа — Issues of Analysis // Архив

Пробл. анал. Issues Anal., 2019, том 8(26), выпуск 3, страницы 83–95 (Mi pa274)

Integral representations for the Jacobi–Piñeiro polynomials and the functions of the second kind

V. G. Lysov

Keldysh Institute of Applied Mathemtics, RAS, 4 Miusskaya sq., Moscow 125047, Russia

Аннотация: We consider the Hermite–Padé approximants for the Cauchy transforms of the Jacobi weights in one interval. The denominators of the approximants are known as Jacobi–Piñeiro polynomials. These polynomials, together with the functions of the second kind, satisfy a generalized hypergeometric differential equation. In the case of the two weights, we construct the basis of the solutions of this ODE with elements of different growth rate. We obtain the integral representations for the basis elements.

Ключевые слова: Hermite–Padé approximants, Jacobi–Piñeiro multiple orthogonal polynomials, functions of the second kind, integral representations, generalized hypergeometric functions.

УДК: 517.53

MSC: 33C20, 33C45

Поступила в редакцию: 16.08.2019
Исправленный вариант: 30.10.2019
Принята в печать: 29.10.2019

Язык публикации: английский

DOI: 10.15393/j3.art.2019.6830



Реферативные базы данных:


© МИАН, 2024