RUS  ENG
Полная версия
ЖУРНАЛЫ // Проблемы анализа — Issues of Analysis // Архив

Пробл. анал. Issues Anal., 2019, том 8(26), выпуск 3, страницы 187–203 (Mi pa283)

Double cosine-sine series and Nikol'skii classes in uniform metric

S. S. Volosivets

Saratov State University, 83 Astrakhanskaya St., Saratov 410012, Russia

Аннотация: In the this paper, we give neccessary and sufficient conditions for a function even with respect to the first argument but odd with respect to the second one to belong to the Nikol'skii classes defined by a mixed modulus of smoothness of a mixed derivative (both have arbitrary integer orders). These conditions involve the growth of partial sum of Fourier cosine-sine coefficients with power weights or the rate of decreasing to zero of these coefficients. A similar problem for generalized "small" Nikol'skii classes is also treated.

Ключевые слова: double cosine-sine series, mixed modulus of smoothness, Nikol'skii classes.

MSC: 42B05, 42B35, 42A32

Поступила в редакцию: 03.07.2019

Язык публикации: английский



© МИАН, 2024