RUS  ENG
Полная версия
ЖУРНАЛЫ // Проблемы анализа — Issues of Analysis // Архив

Пробл. анал. Issues Anal., 2020, том 9(27), выпуск 1, страницы 66–82 (Mi pa289)

Эта публикация цитируется в 1 статье

The analysis of bifurcation solutions of the Camassa–Holm equation by angular singularities

H. K. Kadhim, M. A. Abdul Hussain

Faculty of Education for Pure Sciences, Department of Mathematics, University of Basrah, Basrah, Iraq

Аннотация: This paper studies bifurcation solutions of the Camassa–Holm equation by using the local Lyapunov–Schmidt method. The Camassa–Holm equation is studied by reduction to an ODE. We find the key function that corresponds to the functional related to this equation and defined on a new domain. The bifurcation analysis of the key function is investigated by the angular singularities. We find the parametric equation of the bifurcation set (caustic) with its geometric description. Also, the bifurcation spreading of the critical points is found.

Ключевые слова: Camassa–Holm equation, bifurcation solutions, angular singularities, caustic.

УДК: 517.968, 517.988

MSC: 34K18, 34K10

Поступила в редакцию: 22.07.2019
Исправленный вариант: 21.01.2020
Принята в печать: 26.01.2020

Язык публикации: английский

DOI: 10.15393/j3.art.2020.6770



Реферативные базы данных:


© МИАН, 2024