RUS  ENG
Полная версия
ЖУРНАЛЫ // Проблемы анализа — Issues of Analysis // Архив

Пробл. анал. Issues Anal., 2020, том 9(27), выпуск 3, страницы 66–82 (Mi pa307)

Эта публикация цитируется в 9 статьях

Some new generalizations of Hadamard–type Midpoint inequalities involving fractional integrals

B. Bayraktar

Bursa Uludag University, Faculty of Education, Gorukle Campus, 16059, Bursa, Turkey

Аннотация: In this study, we formulate the identity and obtain some generalized inequalities of the Hermite–Hadamard type by using fractional Riemann–Liouville integrals for functions whose absolute values of the second derivatives are convex. The results are obtained by uniformly dividing a segment $[a,b]$ into $n$ equal sub-intervals. Using this approach, the absolute error of a Midpoint inequality is shown to decrease approximately $n^{2}$ times. A dependency between accuracy of the absolute error ($\varepsilon $) of the upper limit of the Hadamard inequality and the number ($n$) of lower intervals is obtained.

Ключевые слова: convexity, Hadamard inequality, Holder's inequality, Power-mean inequality, Riemann-Liouville fractional integrals.

УДК: 517.518.86, 517.218.244, 517.927.2

MSC: 26A51, 26D15

Поступила в редакцию: 26.03.2020
Исправленный вариант: 18.06.2020
Принята в печать: 23.06.2020

Язык публикации: английский

DOI: 10.15393/j3.art.2020.8270



Реферативные базы данных:


© МИАН, 2024