RUS  ENG
Полная версия
ЖУРНАЛЫ // Проблемы анализа — Issues of Analysis // Архив

Пробл. анал. Issues Anal., 2020, том 9(27), выпуск 3, страницы 99–118 (Mi pa309)

Refinements and reverses of Féjer's inequalities for convex functions on linear spaces

S. S. Dragomir

Victoria University, College of Engineering & Science, PO Box 14428, Melbourne City, MC 8001, Australia

Аннотация: In this paper, we establish some refinements and reverses of the celebrated Féjer's inequalities for the general case of functions defined on linear spaces. The obtained bounds are in terms of the Gâteaux lateral derivatives. Some applications for norms and semi-inner products in normed linear spaces are also provided.

Ключевые слова: convex functions, integral inequalities, Hermite-Hadamard inequality, Féjer's inequalities.

УДК: 517.51

MSC: 26D15, 26D10

Поступила в редакцию: 29.07.2020
Исправленный вариант: 09.10.2020
Принята в печать: 09.10.2020

Язык публикации: английский

DOI: 10.15393/j3.art.2020.8830



Реферативные базы данных:


© МИАН, 2024