RUS  ENG
Полная версия
ЖУРНАЛЫ // Проблемы анализа — Issues of Analysis // Архив

Пробл. анал. Issues Anal., 2021, том 10(28), выпуск 1, страницы 3–22 (Mi pa313)

Эта публикация цитируется в 4 статьях

Several new integral inequalities via $k$-Riemann–Liouville fractional integrals operators

S. I. Butta, B. Bayraktarb, M. Umara

a COMSATS University Islamabad, Lahore Campus, Defence Road Off Raiwind Rd, Lda Avenue Phase 1 Lda Avenue, Lahore, Punjab 54000, Pakistan
b Bursa ULUDAĞ UNIVERSITY, Faculty of Education, Department of Mathematics and Science Education, Görukle Campus, 16059, BURSA, TURKEY

Аннотация: The main objective of this paper is to establish several new integral inequalities including $k$-Riemann–Liouville fractional integrals for convex, $s$-Godunova–Levin convex functions, quasi-convex, $\eta$-quasi-convex. In order to obtain our results, we have used classical inequalities as Hölder inequality, Power mean inequality and Weighted Hölder inequality. We also give some applications.

Ключевые слова: $\eta$-quasi-convex, $s$-Godunova–Levin type, $k$-Riemann–Liouville fractional integral, Hölder inequality, weighted Hölder inequality, power mean inequality.

УДК: 517.518.86, 517.218.244, 517.927.2

MSC: 26A33, 26A51, 26D15

Поступила в редакцию: 22.07.2020
Исправленный вариант: 30.11.2020
Принята в печать: 11.12.2020

Язык публикации: английский

DOI: 10.15393/j3.art.2021.8770



Реферативные базы данных:


© МИАН, 2024