RUS  ENG
Полная версия
ЖУРНАЛЫ // Проблемы анализа — Issues of Analysis // Архив

Пробл. анал. Issues Anal., 2021, том 10(28), выпуск 2, страницы 67–78 (Mi pa325)

Эта публикация цитируется в 1 статье

On the homotopy classification of positively homogeneous functions of three variables

E. Mukhamadieva, A. N. Naimovb

a Vologda State University, 15 Lenina st., Vologda 160000, Russia
b Vologda Institute of Law and Economics of the Federal Penitentiary Service, 2 Shchetinina st., Vologda 160002, Russia

Аннотация: In this paper, we study the problem of homotopy classification of the set $\mathcal{F}$ of positively homogeneous smooth functions in three variables whose gradients do not vanish at nonzero points. This problem is of interest in the study of periodic and bounded solutions of systems of ordinary differential equations with the main positive homogeneous nonlinearity. The subset $\mathcal{F}_0\subset\mathcal{F}$ is presented and for any function $g(x)\in\mathcal{F}_0$, a formula for calculating the rotation $\gamma (\nabla g)$ of its gradient $\nabla g(x)$ on the boundary of the unit ball $|x| <1$ is derived. It is proved that any function from $\mathcal{F}$ is homotopic to some function from $\mathcal{F}_0$.

Ключевые слова: positively homogeneous function, homotopy, homotopy classification, vector field rotation.

УДК: 517.938.5

MSC: 26A21, 54C50

Поступила в редакцию: 04.03.2021
Исправленный вариант: 13.05.2021
Принята в печать: 18.05.2021

Язык публикации: английский

DOI: 10.15393/j3.art.2021.9970



Реферативные базы данных:


© МИАН, 2024