RUS  ENG
Полная версия
ЖУРНАЛЫ // Проблемы анализа — Issues of Analysis // Архив

Пробл. анал. Issues Anal., 2021, том 10(28), выпуск 3, страницы 53–70 (Mi pa331)

Эта публикация цитируется в 2 статьях

Generalized quadratic spectrum approximation in bounded and unbounded cases

S. Kamouche, H. Guebbai, M. Ghiat, S. Segni

Laboratoire des Mathématiques Appliquées et de Modélisation, Université 8 mai 1945 guelma. B.P.401 Guelma 24000 Algérie

Аннотация: The goal of this paper is to generalize concepts in spectral theory in order to define the quadratic spectrum associated to three bounded linear operators. This concept was initially defined for three matrices. Moreover, we construct a new method of spectral approximation to avoid the problem of spectral pollution. This problem is resolved with the obtention of property U under the norm convergence or the collectively compact convergence. Also, we make numerical tests on the quadratic pencil associated to Schrödinger's operator in order to validate our theoretical results and to show the efficiency of our method.

Ключевые слова: generalized quadratic spectrum, spectral approximation, property U, quadratic pencil.

УДК: 517.9, 519.6

MSC: 34L16, 47A10, 47A75, 45C05, 65N15, 93B60

Поступила в редакцию: 30.03.2021
Исправленный вариант: 14.06.2021
Принята в печать: 16.06.2021

Язык публикации: английский

DOI: 10.15393/j3.art.2021.10150



Реферативные базы данных:


© МИАН, 2025