RUS  ENG
Полная версия
ЖУРНАЛЫ // Проблемы анализа — Issues of Analysis // Архив

Пробл. анал. Issues Anal., 2021, том 10(28), выпуск 3, страницы 91–107 (Mi pa333)

Эта публикация цитируется в 1 статье

Invariant subspaces in unbounded domains

A. S. Krivosheevab, O. A. Krivosheevaba

a Baskir State University, 32 Z. Validi St., Ufa 450076, Russia
b Institute of Mathematics, Ufa Federal Research Center, RAS, 112 Chernyshevsky str., Ufa 450008, Russia

Аннотация: We study subspaces of functions analytic in an unbounded convex domain of the complex plane and invariant with respect to the differentiation operator. This paper is devoted to the study of the problem of representing all functions from an invariant subspace by series of exponential monomials. These exponential monomials are eigenfunctions and associated functions of the differentiation operator in the invariant subspace. A simple geometric criterion of the fundamental principle is obtained. It is formulated just in terms of the Krisvosheev condensation index for the sequence of exponents of the mentioned exponential monomials.

Ключевые слова: invariant subspace, fundamental principle, exponential monomial, entire function, series of exponents.

УДК: 517.53

MSC: 30D10

Поступила в редакцию: 14.06.2021
Исправленный вариант: 11.09.2021
Принята в печать: 14.09.2021

Язык публикации: английский

DOI: 10.15393/j3.art.2021.10870



Реферативные базы данных:


© МИАН, 2024