RUS  ENG
Полная версия
ЖУРНАЛЫ // Проблемы анализа — Issues of Analysis // Архив

Пробл. анал. Issues Anal., 2021, том 10(28), выпуск 3, страницы 113–128 (Mi pa335)

Boundary-value problems for the inhomogeneous Schrödinger equation with variations of its potential on non-compact Riemannian manifolds

E. A. Mazepa, D. K. Ryaboshlykova

Volgograd State University, 100 Universitetsky pr., Volgograd 400062, Russia

Аннотация: We study solutions of the inhomogeneous Schrödinger equation $\Delta u-c(x)u=g(x)$, where $c(x)$, $g(x)$ are Hölder functions, with variations of its potential $ c(x)\geq 0 $ on a noncompact Riemannian manifold $M$. Our technique essentially relies on an approach from the papers by E. A. Mazepa and S. A. Korol’kov connected with introduction of equivalency classes of functions. It made it possible to formulate boundary-value problems on $M$ independently from a natural geometric compactification. In the present work, we obtain conditions under which the solvability of boundary-value problems of the inhomogeneous Schrödinger equation is preserved for some variations of the coefficient $c(x) \geq 0$ on $M$.

Ключевые слова: inhomogeneous Schrödinger equation, variations of coefficients, boundary-value problems, Riemannian manifold.

УДК: 517.95

MSC: 31C12

Поступила в редакцию: 19.06.2021
Исправленный вариант: 12.10.2021
Принята в печать: 15.10.2021

Язык публикации: английский

DOI: 10.15393/j3.art.2021.10911



Реферативные базы данных:


© МИАН, 2024