RUS  ENG
Полная версия
ЖУРНАЛЫ // Проблемы анализа — Issues of Analysis // Архив

Пробл. анал. Issues Anal., 2022, том 11(29), выпуск 1, страницы 133–144 (Mi pa347)

Эта публикация цитируется в 6 статьях

Coefficient bounds for regular and bi-univalent functions linked with Gegenbauer polynomials

S. R. Swamya, S. Yalçınb

a RV College of Engineering, Bengaluru - 560 059, Karnataka, India
b Bursa Uludag University, 16059, Bursa, Turkey

Аннотация: The main goal of the paper is to initiate and explore two sets of regular and bi-univalent (or bi-Schlicht) functions in $\mathfrak{D} =\{z\in\mathbb{C}:|z| <1\}$ linked with Gegenbauer polynomials. We investigate certain coefficient bounds for functions in these families. Continuing the study on the initial coefficients of these families, we obtain the functional of Fekete-Szegö for each of the two families. Furthermore, we present few interesting observations of the results investigated.

Ключевые слова: Fekete-Szegö, functional, regular function, bi-univalent function, Gegenbauer polynomials.

УДК: 517.54, 517.58

MSC: 30C45, 33C45, 11B39

Поступила в редакцию: 31.05.2021
Исправленный вариант: 16.10.2021
Принята в печать: 21.10.2021

Язык публикации: английский

DOI: 10.15393/j3.art.2022.10351



Реферативные базы данных:


© МИАН, 2024