RUS  ENG
Полная версия
ЖУРНАЛЫ // Проблемы анализа — Issues of Analysis // Архив

Пробл. анал. Issues Anal., 2022, том 11(29), выпуск 2, страницы 3–23 (Mi pa348)

Эта публикация цитируется в 4 статьях

On generalizations of integral inequalities

B. Bayraktara, J. E. Nápolesbc, F. Rabossic

a Bursa Uludag University, Faculty of Education, Gorukle Campus, 16059, Bursa, Turkey
b UNNE, FaCENA, Ave. Libertad 5450, Corrientes 3400, Argentina
c UTN-FRRE, French 414, Resistencia, Chaco 3500, Argentina

Аннотация: In the present study, several new generalized integral inequalities of the Hadamard and Simpson-type are obtained. The results were obtained for functions whose first and third derivatives are either convex or satisfy the Lipschitz condition or the conditions of the Lagrange theorem. In a particular case, these results not only confirm but also improve some upper bounds, well known in the literature for the Simpson and Hermite-Hadamard-type inequalities.

Ключевые слова: convex function, Hermite–Hadamard inequality, Simpson-type inequality, Lipschitz conditions, Lagrange theorem, Riemann–Liouville fractional integral.

УДК: 517.518.86, 517.218.244, 517.927.2

MSC: 26D15, 41A55

Поступила в редакцию: 09.12.2021
Исправленный вариант: 23.05.2022
Принята в печать: 27.05.2022

Язык публикации: английский

DOI: 10.15393/j3.art.2022.11190



Реферативные базы данных:


© МИАН, 2024