RUS  ENG
Полная версия
ЖУРНАЛЫ // Проблемы анализа — Issues of Analysis // Архив

Пробл. анал. Issues Anal., 2022, том 11(29), выпуск 3, страницы 30–44 (Mi pa358)

Эта публикация цитируется в 1 статье

Stability-preserving perturbation of the maximal terms of Dirichlet series

A. M. Gaisina, N. N. Aitkuzhinab

a Institute of Mathematics UFRC RAS, 112 Chernyshevskii st., Ufa 450008, Russia
b Bashkir State University, 32 Zaki Validi st., Ufa 450076, Russia

Аннотация: We study stability of the maximal term of the Dirichlet series with positive exponents, the sum of which is an entire function. This problem is of interest, because the Leont'ev formulas for coefficients calculated using a biorthogonal system of functions play the key role in obtaining asymptotic estimates for entire Dirichlet series on various continua going to infinity (for example, curves). This fact naturally leads to the need to study the behavior of the logarithm of the maximum term also for the Hadamard composition of the corresponding Dirichlet series. For the wide class of entire Dirichlet series determined by a convex growth majorant, we establish a criterion for the equivalence of the logarithms of the moduli of the original series and a modified Dirichlet series outside some exceptional set.

Ключевые слова: Dirichlet series, Hadamard composition, stability of the maximal term, Borel–Nevanlinna lemma, convex function.

УДК: 517.9

MSC: 30D40

Поступила в редакцию: 12.02.2022
Исправленный вариант: 13.09.2022
Принята в печать: 15.09.2022

Язык публикации: английский

DOI: 10.15393/j3.art.2022.12370



Реферативные базы данных:


© МИАН, 2024