RUS  ENG
Полная версия
ЖУРНАЛЫ // Проблемы анализа — Issues of Analysis // Архив

Пробл. анал. Issues Anal., 2022, том 11(29), выпуск 3, страницы 45–55 (Mi pa359)

Эта публикация цитируется в 2 статьях

On a Carleman problem in the case of a doubly periodic group

F. N. Garif'yanov, E. V. Strezhneva

Kazan State Power Engineering University, 51 Krasnosel'skaya street, Kazan 420066, Russia

Аннотация: Let $\Gamma$ be a doubly periodic group whose fundamental region $D$ is a rectangle, in which the ratio of the largest side to the shortest one does not exceed $3$. The generating transformations of the group and their inverse transformations induce, on the boundary, an involutive inverse shift, discontinuous at the vertices. We consider a particular case of the Carleman problem for functions that are analytic in $D$ (the so-called jump problem). We show that the regularization of the unknown function suggested by Torsten Carleman leads to an equivalent regularization of the problem. For this, we rely on the contraction mapping principle for Banach spaces and use the theory of Weierstrass elliptic functions. The integral representation was first introduced by Carleman during his talk at the International Congress of Mathematicians in Zürich in 1932. However, he did not investigate the Fredholm integral equation obtained by regularizing the jump problem. In particular, the question of equivalence of the jump problem and the corresponding Fredholm equation obtained through the given representation remained open.

Ключевые слова: Carleman problem, regularization method, contraction mapping principle.

УДК: 517.18

MSC: 30F10, 45B05

Поступила в редакцию: 31.01.2022
Исправленный вариант: 24.07.2022
Принята в печать: 29.07.2022

Язык публикации: английский

DOI: 10.15393/j3.art.2022.11851



Реферативные базы данных:


© МИАН, 2024