RUS  ENG
Полная версия
ЖУРНАЛЫ // Проблемы анализа — Issues of Analysis // Архив

Пробл. анал. Issues Anal., 2023, том 12(30), выпуск 1, страницы 3–24 (Mi pa365)

Эта публикация цитируется в 2 статьях

Exponential approximation of functions in Lebesgue spaces with Muckenhoupt weight

R. Akgün

Balikesir University, Faculty of Arts and Sciences, Department of Mathematics, Cagis Yerleskesi, Altieylul, 10145, Balikesir, Türkiye

Аннотация: Using a transference result, several inequalities of approximation by entire functions of exponential type in $\mathcal{C}(\mathbf{R})$, the class of bounded uniformly continuous functions defined on $\mathbf{R}:=\left(-\infty, +\infty \right)$, are extended to the Lebesgue spaces $L^{p}\left( \mathbf{\varrho }dx\right) $ $1\leq p<\infty $ with Muckenhoupt weight $\mathbf{\varrho }$. This gives us a different proof of Jackson type direct theorems and Bernstein-Timan type inverse estimates in $L^{p}\left( \mathbf{\varrho }dx\right) $. Results also cover the case $p=1$.

Ключевые слова: Lebesgue spaces, Muckenhoupt weight, entire functions of exponential type, one-sided Steklov operator, best approximation, direct theorem, inverse theorem, modulus of smoothness, Marchaud-type inequality, K-functional.

УДК: 517.518, 517.982.256

MSC: 41A10, 41A25, 41A27, 41A65, 41A81

Поступила в редакцию: 29.08.2022
Исправленный вариант: 09.12.2022
Принята в печать: 16.12.2022

Язык публикации: английский

DOI: 10.15393/j3.art.2023.12250



Реферативные базы данных:


© МИАН, 2024