Аннотация:
Using a transference result, several inequalities of approximation by entire functions of exponential type in $\mathcal{C}(\mathbf{R})$, the class of bounded uniformly continuous functions defined on $\mathbf{R}:=\left(-\infty, +\infty \right)$, are extended to the Lebesgue spaces $L^{p}\left( \mathbf{\varrho }dx\right) $$1\leq p<\infty $ with Muckenhoupt weight $\mathbf{\varrho }$. This gives us a different proof of Jackson type direct theorems and Bernstein-Timan type inverse estimates in $L^{p}\left( \mathbf{\varrho }dx\right) $. Results also cover the case $p=1$.
Ключевые слова:Lebesgue spaces, Muckenhoupt weight, entire functions of exponential type, one-sided Steklov operator, best approximation, direct theorem, inverse theorem, modulus of smoothness, Marchaud-type inequality, K-functional.