RUS  ENG
Полная версия
ЖУРНАЛЫ // Проблемы анализа — Issues of Analysis // Архив

Пробл. анал. Issues Anal., 2023, том 12(30), выпуск 1, страницы 34–45 (Mi pa367)

Variable Lebesgue algebra on a Locally Compact group

P. Sahaa, B. Hazarikab

a Department of Mathematics, Sipajhar College, Sipajhar, Darrang-784145, Assam, India
b Department of Mathematics, Gauhati University, Guwahati-781014, Assam, India

Аннотация: For a locally compact group $H$ with a left Haar measure, we study the variable Lebesgue algebra $\mathcal{L}^{p(\cdot)}(H)$ with respect to convolution. We show that if $\mathcal{L}^{p(\cdot)}(H)$ has a bounded exponent, then it contains a left approximate identity. We also prove a necessary and sufficient condition for $\mathcal{L}^{p(\cdot)}(H)$ to have an identity. We observe that a closed linear subspace of $\mathcal{L}^{p(\cdot)}(H)$ is a left ideal if and only if it is left translation invariant.

Ключевые слова: variable Lebesgue space, bounded exponent, approximate identity, Haar measure.

УДК: 517.986.6

MSC: 43A10, 43A15, 43A75, 43A77

Поступила в редакцию: 17.07.2022
Исправленный вариант: 26.12.2022
Принята в печать: 29.12.2022

DOI: 10.15393/j3.art.2023.12110



Реферативные базы данных:


© МИАН, 2024