RUS  ENG
Полная версия
ЖУРНАЛЫ // Проблемы анализа — Issues of Analysis // Архив

Пробл. анал. Issues Anal., 2023, том 12(30), выпуск 1, страницы 72–86 (Mi pa369)

Эта публикация цитируется в 2 статьях

A new approach to Egorov's theorem by means of $\alpha\beta$-statistical ideal convergence

Sonali Sharma, Kuldip Raj

School of Mathematics, Shri Mata Vaishno Devi University, Katra-182320, J&K, India

Аннотация: In this work, we introduce the $\alpha\beta$-statistical pointwise ideal convergence, $\alpha\beta$-statistical uniform ideal convergence, and $\alpha\beta$-equi-statistical ideal convergence for sequences of fuzzy-valued functions. With the help of some examples, we present the relationship between these convergence concepts. Moreover, we give the $\alpha\beta$-statistical ideal version of Egorov's theorem for the sequences of fuzzy valued measurable functions.

Ключевые слова: Egorov's theorem, $\alpha\beta$-statistical pointwise ideal convergence, $\alpha\beta$-statistical uniform ideal convergence, $\alpha\beta$-statistical equi-ideal convergence.

УДК: 510.22

MSC: 40A05, 40A30, 46S40, 47S40

Поступила в редакцию: 26.05.2022
Исправленный вариант: 06.10.2022
Принята в печать: 12.10.2022

DOI: 10.15393/j3.art.2023.11890



Реферативные базы данных:


© МИАН, 2024