RUS  ENG
Полная версия
ЖУРНАЛЫ // Проблемы анализа — Issues of Analysis // Архив

Пробл. анал. Issues Anal., 2023, том 12(30), выпуск 1, страницы 87–95 (Mi pa370)

On a sum involving certain arithmetic functions on Piatetski–Shapiro and Beatty sequences

T. Srichan

Department of Mathematics, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand

Аннотация: Let $c$, $\alpha$, $\beta \in \mathbb{R}$ be such that $1<c<2$, $\alpha>1$ is irrational and with bounded partial quotients, $\beta\in [0, \alpha)$. In this paper, we study asymptotic behaviour of the summations of the form $\displaystyle \sum\limits_{n\leq N}\frac{f(\lfloor n^c \rfloor)}{ \lfloor n^c \rfloor}$ and $\displaystyle \sum\limits_{n\leq N}\frac{f(\lfloor \alpha n+\beta \rfloor)}{\lfloor \alpha n+\beta \rfloor}$, where $f$ is the Euler totient function $\phi$, Dedekind function $\Psi$, sum-of-divisors function $\sigma$, or the alternating sum-of-divisors function $\sigma_{alt}$.

Ключевые слова: arithmetic function, Beatty sequence, Piatetski–Shapiro sequence.

УДК: 511.174, 511.35, 517.589

MSC: 11N37, 11N69

Поступила в редакцию: 16.08.2022
Исправленный вариант: 29.09.2022
Принята в печать: 10.10.2022

Язык публикации: английский

DOI: 10.15393/j3.art.2023.12210



Реферативные базы данных:


© МИАН, 2024