RUS  ENG
Полная версия
ЖУРНАЛЫ // Проблемы анализа — Issues of Analysis // Архив

Пробл. анал. Issues Anal., 2023, том 12(30), выпуск 2, страницы 3–16 (Mi pa372)

Эта публикация цитируется в 4 статьях

Statistical bounded sequences of bi-complex numbers

S. Bera, B. Ch. Tripathy

Department of Mathematics, Tripura University, Suryamaninagar, Agartala-799022, Tripura(W), India

Аннотация: In this paper, we extend statistical bounded sequences of real or complex numbers to the setting of sequences of bi-complex numbers. We define the statistical bounded sequence space of bi-complex numbers $b_{\infty}^{*}$ and also define the statistical bounded sequence spaces of ideals $\mathbb{I}_{\infty}^{1}$ and $\mathbb{I}_{\infty}^{2}$. We prove some inclusion relations and provide examples. We establish that $b_{\infty}^{*}$ is the direct sum of $\mathbb{I}_{\infty}^{1}$ and $ \mathbb{I}_{\infty}^{2}$. Also, we prove the decomposition theorem for statistical bounded sequences of bi-complex numbers. Finally, summability properties in the light of J.A. Fridy's work are studied.

Ключевые слова: natural density, bi-complex, statistical bounded, norm.

УДК: 517.521

MSC: 40A35, 40G15, 46A45

Поступила в редакцию: 08.01.2023
Исправленный вариант: 21.05.2023
Принята в печать: 12.05.2023

Язык публикации: английский

DOI: 10.15393/j3.art.2023.13090



© МИАН, 2024