RUS  ENG
Полная версия
ЖУРНАЛЫ // Проблемы анализа — Issues of Analysis // Архив

Пробл. анал. Issues Anal., 2023, том 12(30), выпуск 2, страницы 17–36 (Mi pa373)

Эта публикация цитируется в 5 статьях

A class of harmonic $(p,q)$-starlike functions involving a generalized $(p,q)$-Bernardi integral operator

S. H. Hadiab, M. Darusb

a Department of Mathematics, College of Education for Pure Sciences, University of Basrah, Basrah 61001, Iraq
b Department of Mathematical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor Darul Ehsan, Malaysia

Аннотация: With the aid of $q$-calculus, this paper introduces a new generalized $(p, q)$-Bernardi integral operator $\mathcal{B}_{n,q}^{p}f(z)$. Then, we define a new subclass of harmonic $(p, q)$-starlike functions of complex order associated with the operator $\mathcal{B}_{n,q}^{p}f(z)$. For this new subclass, a necessary and sufficient condition, compact and convex combination theorems, a distortion theorem, and extreme points are investigated. Finally, we discuss the weight mean theorem for functions belonging to this class. This research highlights the significant connections between the results presented in this study and previous works.

Ключевые слова: harmonic functions, $q$-calculus, $(p, q)$-Bernardi integral operator, distortion bounds, extreme points, convex combination.

УДК: 517.54

MSC: Primary 05A30, 30C45; Secondary 11B65, 47B38

Поступила в редакцию: 11.12.2022
Исправленный вариант: 07.03.2023
Принята в печать: 06.03.2023

Язык публикации: английский

DOI: 10.15393/j3.art.2023.12850



© МИАН, 2024