RUS  ENG
Полная версия
ЖУРНАЛЫ // Проблемы анализа — Issues of Analysis // Архив

Пробл. анал. Issues Anal., 2024, том 13(31), выпуск 1, страницы 100–123 (Mi pa394)

Littlewood–Paley $g_{\lambda}^*$-function characterizations of Musielak–Orlicz Hardy spaces on spaces of homogeneous type

X. Yan

Institute of Contemporary Mathematics, School of Mathematics and Statistics, Henan University, Kaifeng 475004, The People's Republic of China

Аннотация: Let $({\mathcal X}, d, \mu)$ be a space of homogeneous type, in the sense of Coifman and Weiss, and $\varphi\colon\ \mathcal{X}\times[0, \infty)\rightarrow[0, \infty)$ satisfy that, for almost every $x\in\mathcal{X}$, $\varphi(x, \cdot)$ is an Orlicz function and that $\varphi(\cdot, t)$ is a Muckenhoupt weight uniformly in $t\in[0, \infty)$. In this article, by using the aperture estimate of Littlewood–Paley auxiliary functions on the Musielak–Orlicz space $L^{\varphi}(\mathcal{X})$, we obtain the Littlewood–Paley $g_{\lambda}^*$-function characterization of Musielak–Orlicz Hardy space $H^{\varphi}(\mathcal{X})$. Particularly, the range of $\lambda$ coincides with the best-known one.

Ключевые слова: space of homogeneous type, Musielak–Orlicz Hardy space, Littlewood–Paley auxiliary function, $g_{\lambda}^*$-function.

УДК: 517.518, 517.982, 517.44

MSC: 46E36, 42B25, 42B30, 30L99

Поступила в редакцию: 24.04.2023
Исправленный вариант: 10.10.2023
Принята в печать: 03.11.2023

Язык публикации: английский

DOI: 10.15393/j3.art.2023.15310



© МИАН, 2025