RUS  ENG
Полная версия
ЖУРНАЛЫ // Проблемы анализа — Issues of Analysis // Архив

Пробл. анал. Issues Anal., 2024, том 13(31), выпуск 2, страницы 84–105 (Mi pa400)

Hyperelliptic integrals and special functions for the spatial variational problem

B. E. Levitskii, A. S. Ignatenko

Kuban State University, 149 Stavropolskaya st., Krasnodar 350040, Russia

Аннотация: The study of the properties of special functions plays an important role in solving many problems in geometric function theory. We study the properties of hyperelliptic integrals and special functions, which definition includes a parameter that depends on the dimension of the space. The appearance of these functions is associated with the solution of a specific variational problem of finding in $n$-dimensional Euclidean space a surface that has the smallest area in a given metric among the hypersurfaces formed by rotation around the polar axis of a plane curve connecting two fixed points in the upper half-plane.

Ключевые слова: special functions, hyperelliptic integrals, modulus of a family of surfaces, variational problem.

УДК: 517.58, 517.54, 517.977

MSC: 33E20, 30C65, 30C70, 49Q05

Поступила в редакцию: 12.12.2023
Исправленный вариант: 21.03.2024
Принята в печать: 02.05.2024

Язык публикации: английский

DOI: 10.15393/j3.art.2024.15371



© МИАН, 2024