RUS  ENG
Полная версия
ЖУРНАЛЫ // Проблемы анализа — Issues of Analysis // Архив

Пробл. анал. Issues Anal., 2024, том 13(31), выпуск 2, страницы 106–127 (Mi pa401)

Milne-type integral inequalities for modified $(h,m)$-convex functions on fractal sets

J. E. Nápolesab, P. M. Guzmánac, B. Bayraktard

a UNNE, FaCENA, Ave. Libertad 5450, Corrientes 3400, Argentina
b UTN-FRRE, French 414, Resistencia, Chaco 3500, Argentina
c UNNE, Facultad de Ciencias Agrarias Sargento Cabral 2131, Corrientes, Argentina
d Bursa Uludag University, Faculty of Education, Gorukle Campus, 16059, Bursa, Turkey.

Аннотация: In the article, new versions of integral inequalities of Milne type are derived for $(h, m)$-convex modified functions of the second type on fractal sets. Based on a new generalized local fractional weighted integral operator, an identity is established as the foundation for subsequently obtained inequalities. Throughout our study, we obtained certain results known in the literature, which include particular cases of our findings.

Ключевые слова: local fractional derivatives, local fractional integrals, fractal sets, Milne inequality, $(h,m)$-convex modified functions of second type, Hölder inequality, power mean inequality.

УДК: 517.518.862, 517.218.244

MSC: Primary 26A33; Secondary 26D10, 47A63

Поступила в редакцию: 28.12.2023
Исправленный вариант: 25.03.2024
Принята в печать: 26.03.2024

Язык публикации: английский

DOI: 10.15393/j3.art.2024.15450



© МИАН, 2024