RUS  ENG
Полная версия
ЖУРНАЛЫ // P-Adic Numbers, Ultrametric Analysis, and Applications // Архив

P-Adic Numbers Ultrametric Anal. Appl., 2012, том 4, номер 3, страницы 167–178 (Mi padic11)

Эта публикация цитируется в 3 статьях

Clustering by hypergraphs and dimensionality of cluster systems

S. Albeverioa, S. V. Kozyrevb

a University of Bonn, Endenicher Allee 60, D-53115 Bonn, Germany
b Steklov Mathematical Institute, Gubkina Str. 8, Moscow 119991, Russia

Аннотация: In the present paper we discuss a new clustering procedure in the case where instead of a single metric we have a family of metrics. In this case we can obtain a partially ordered graph of clusters which is not necessarily a tree. We discuss a structure of a hypergraph above this graph. We propose two definitions of dimension for hyperedges of this hypergraph and show that for the multidimensional p-adic case both dimensions are reduced to the number of p-adic parameters. We discuss the application of the hypergraph clustering procedure to the construction of phylogenetic graphs in biology. In this case the dimension of a hyperedge will describe the number of sources of genetic diversity.

Поступила в редакцию: 16.04.2012

Язык публикации: английский

DOI: 10.1134/S2070046612030016



Реферативные базы данных:


© МИАН, 2025