RUS  ENG
Полная версия
ЖУРНАЛЫ // Прикладная дискретная математика // Архив

ПДМ, 2017, номер 38, страницы 49–56 (Mi pdm605)

Теоретические основы прикладной дискретной математики

On irreducible algebraic sets over linearly ordered semilattices II

A. N. Shevlyakovab

a Sobolev Institute of Mathematics, Omsk, Russia
b Omsk State Technical University, Omsk, Russia

Аннотация: Equations over finite linearly ordered semilattices are studied. It is assumed that the order of a semilattice is not less than the number of variables in an equation. For any equation $t(X)=s(X)$, we find irreducible components of its solution set. We also compute the average number $\overline{\mathrm{Irr}}(n)$ of irreducible components for all equations in $n$ variables. It turns out that $\overline{\mathrm{Irr}}(n)$ and the function $\frac49n!$ are asymptotically equivalent.

Ключевые слова: irreducible components, algebraic sets, semilattices.

УДК: 512.53

Язык публикации: английский

DOI: 10.17223/20710410/38/3



Реферативные базы данных:


© МИАН, 2024