Аннотация:
Рассматривается множество возможных разложений двоичной функции в сумму (произведение) функций от непересекающихся множеств переменных при различных линейных преобразованиях аргументов, полученных отбрасыванием одночленов малой степени в их многочленах Жегалкина. Каждому такому разложению соответствует разложение векторного пространства в прямую сумму подпространств. Приведены условия, при которых такое разложение определяется однозначно с точностью до перестановки слагаемых (сомножителей) и связанных с ними подпространств между собой.