RUS  ENG
Полная версия
ЖУРНАЛЫ // Прикладная дискретная математика // Архив

ПДМ, 2020, номер 47, страницы 16–21 (Mi pdm691)

Эта публикация цитируется в 2 статьях

Теоретические основы прикладной дискретной математики

A note on the properties of associated Boolean functions of quadratic APN functions

A. A. Gorodilovaab

a Sobolev Institute of Mathematics, Novosibirsk, Russia
b Novosibirsk State University, Novosibirsk, Russia

Аннотация: Let $F$ be a quadratic APN function in $n$ variables. The associated Boolean function $\gamma_F$ in $2n$ variables ($\gamma_F(a,b)=1$ if $a\neq\mathbf{0}$ and equation $F(x)+F(x+a)=b$ has solutions) has the form $\gamma_F(a,b) = \Phi_F(a) \cdot b + \varphi_F(a) + 1$ for appropriate functions $\Phi_F:\mathbb{F}_2^n\to \mathbb{F}_2^n$ and $\varphi_F:\mathbb{F}_2^n\to \mathbb{F}_2$. We summarize the known results and prove new ones regarding properties of $\Phi_F$ and $\varphi_F$. For instance, we prove that degree of $\Phi_F$ is either $n$ or less or equal to $n-2$. Based on computation experiments, we formulate a conjecture that degree of any component function of $\Phi_F$ is $n-2$. We show that this conjecture is based on two other conjectures of independent interest.

Ключевые слова: a quadratic APN function, the associated Boolean function, degree of a function.

УДК: 519.7

Язык публикации: английский

DOI: 10.17223/20710410/47/2



Реферативные базы данных:


© МИАН, 2024