RUS  ENG
Полная версия
ЖУРНАЛЫ // Прикладная дискретная математика // Архив

ПДМ, 2021, номер 53, страницы 5–11 (Mi pdm743)

Теоретические основы прикладной дискретной математики

Equations over direct powers of algebraic structures in relational languages

A. Shevlyakovab

a Sobolev Institute of Mathematics SB RAS, Omsk, Russian Federation
b Omsk State Technical University, Omsk, Russian Federation

Аннотация: For a semigroup $S$ (group $G$) we study relational equations and describe all semigroups $S$ with equationally Noetherian direct powers. It follows that any group $G$ has equationally Noetherian direct powers if we consider $G$ as an algebraic structure of a certain relational language. Further we specify the results as follows: if a direct power of a finite semigroup $S$ is equationally Noetherian, then the minimal ideal $\text{Ker}(S)$ of $S$ is a rectangular band of groups and $\text{Ker}(S)$ coincides with the set of all reducible elements.

Ключевые слова: relations, groups, semigroups, direct powers, equationally Noetherian algebraic structures.

УДК: 512.53

Язык публикации: английский

DOI: 10.17223/20710410/53/1



Реферативные базы данных:


© МИАН, 2024