Аннотация:
Матрично-графовый подход применяется для оценки множества существенных и нелинейных переменных координатных функций произведения преобразований векторных пространств. Для существенных переменных оценки получаются с помощью умножения двоичных перемешивающих матриц (или орграфов) умножаемых преобразований, для нелинейных переменных — с помощью умножения троичных матриц нелинейности умножаемых преобразований или соответствующих им орграфов нелинейности, дуги которых помечены числами множества $\{0,1,2\}$. Для степеней заданного преобразования область нетривиальных оценок ограничена: для множества существенных переменных — экспонентом перемешивающей матрицы (орграфа); для множества нелинейных переменных — $\langle 2\rangle$-экспонентом матрицы (орграфа) нелинейности. Для класса преобразований двоичных регистров сдвига получена достижимая оценка $\langle 2\rangle$-экспонентов, выраженная через длину регистра сдвига и множества номеров существенных и нелинейных переменных функции обратной связи. Для регистровых преобразований, орграф нелинейности которых имеет петлю, получена точная формула $\langle 2\rangle$-экспонента. Результаты могут быть использованы для оценки характеристик нелинейности криптографических функций, построенных на основе итераций регистровых преобразований.