Аннотация:
Работа посвящена вопросам, связанным с разграничением доступа посредством идеальных совершенных схем разделения секрета и матроидов. Рассматриваются однородные матроиды, т.е. такие, все циклы которых имеют одинаковую мощность, при этом, возможно, не все подмножества этой мощности являются циклами. Установлена их связь с блок-схемами, в том числе с семейством троек Штейнера, а именно доказано, что матроид, у которого когиперплоскости – тройки Штейнера, является однородным связным и разделяющим, если его мощность не меньше семи. Доказано, что блок-схема, в которой каждая пара различных элементов появляется в единственном блоке, задаёт когиперплоскости однородного связного разделяющего матроида. Выдвинуты гипотезы для дальнейшего исследования.