RUS  ENG
Полная версия
ЖУРНАЛЫ // Прикладная дискретная математика. Приложение // Архив

ПДМ. Приложение, 2018, выпуск 11, страницы 6–9 (Mi pdma384)

Теоретические основы прикладной дискретной математики

О перемешивающих графах нелинейных подстановок двоичных регистров сдвига

В. С. Григорьевab

a Финансовый университет при Правительстве РФ, г. Москва
b Отдел безопасности сетевых приложений АО "Позитив Текнолоджиз", г. Москва

Аннотация: Исследован класс $R(n,m)$ подстановок $n$-мерного векторного пространства, реализуемых двоичными регистрами левого сдвига длины $n$ c одной обратной связью $f(x_1,\dots,x_n)=x_1\oplus\psi(x_2,\dots,x_n)$, зависящей существенно от $m$ переменных, $3\le m\le n$. Получена двусторонняя оценка экспонента перемешивающих орграфов $\Gamma(g)$ с множеством вершин $V=\{1,2,\dots,n\}$ нелинейных подстановок $g\in R(n,m)$:
$$ n+\left\lceil\frac{n-1}{m-1}\right\rceil-1\le\exp{\Gamma(g)}\le\Delta(D)+n+\left\lfloor\frac{(n-2)^2}2\right\rfloor-1, $$
где $D(g)=\{i_1,\dots,i_m\}$ – множество номеров существенных переменных функции обратной связи (ячеек съёма на регистре сдвига), $1=i_1<\dots<i_m\le n$, $m\le n$; $\Delta(D)$ – наибольшее расстояние между соседними ячейками съёма на регистре сдвига: $\Delta(D)=\max\{i_2-i_1,\dots,i_m-i_{m-1},n-i_m\}$. Получены верхние оценки суммы и отношения экспонентов перемешивающих орграфов подстановки $g$ из класса $R(n,m)$ и обратной к ней подстановки $g^{-1}$:
\begin{gather*} \exp{\Gamma(g)}+\exp{\Gamma(g^{-1})}\le2\left(\Delta(D)+\left\lfloor\frac{n^2}m\right\rfloor\right)+i_m,\\ \frac{\exp{\Gamma(g)}}{\exp{\Gamma(g^{-1})}}\le\frac{\Delta(D)+n+\left\lfloor\frac{(n-2)^2}2\right\rfloor-1}{n+\left\lceil\frac{n-1}{m-1}\right\rceil-1}. \end{gather*}


Ключевые слова: матрично-графовый подход, перемешивающий граф преобразования, примитивный граф, экспонент орграфа, регистр сдвига, число Фробениуса.

УДК: 519.1

DOI: 10.17223/2226308X/11/1



Реферативные базы данных:


© МИАН, 2024