Аннотация:
Найдено число примитивных регулярных графов со степенью $p\le9$, числом вершин $n\le16$ и экспонентом 3 для всех пар $(n,p)$. Получена оценка сверху на максимальное число вершин в примитивных регулярных графах с экспонентом 3 в зависимости от $p$: $n_p\le3(p-1)+2(p-2)(p-1)+(p-2)^2(p+1)$. Найдено точное значение максимального числа вершин в примитивных регулярных графах со степенью 3 и экспонентом 3: $n_3=12$.
Ключевые слова:примитивный граф, регулярный граф, максимальное число вершин.