RUS  ENG
Полная версия
ЖУРНАЛЫ // Прикладная дискретная математика. Приложение // Архив

ПДМ. Приложение, 2018, выпуск 11, страницы 30–33 (Mi pdma402)

Теоретические основы прикладной дискретной математики

Counting points on hyperelliptic curves of type $y^2=x^{2g+1}+ax^{g+1}+bx$

S. A. Novoselov

Immanuel Kant Baltic Federal University, Kaliningrad

Аннотация: In this work, we investigate hyperelliptic curves of type shown in the title over the finite field $\mathbb F_q$, $q=p^n$, $p>2$. For the case of $g=3$ or $4$, $p\nmid4g$ and $b$ is a $4g$-root, we provide efficient methods to compute the number of points in the Jacobian of the curve.

Ключевые слова: hyperelliptic curves, Cartier–Manin matrix, Legendre polynomials, point counting.

УДК: 512.772.7

Язык публикации: английский

DOI: 10.17223/2226308X/11/9



Реферативные базы данных:


© МИАН, 2024