RUS  ENG
Полная версия
ЖУРНАЛЫ // Прикладная дискретная математика. Приложение // Архив

ПДМ. Приложение, 2019, выпуск 12, страницы 196–198 (Mi pdma470)

Математические основы информатики и программирования

Условие разрешимости произвольных формальных грамматик

И. В. Колбасина, К. В. Сафонов

Сибирский государственный университет науки и технологий имени академика М. Ф. Решетнева

Аннотация: Продолжено исследование систем некоммутативных полиномиальных уравнений, которые интерпретируются как грамматики формальных языков. Такие системы решаются в виде формальных степенных рядов (ФСР), выражающих нетерминальные символы через терминальные символы алфавита и рассматриваемых как формальные языки. Всякому ФСР поставлен в соответствие его коммутативный образ, который получается в предположении, что все символы обозначают коммутативные переменные, принимающие значения из поля комплексных чисел. В продолжение исследований совместности систем некоммутативных полиномиальных уравнений, которая напрямую не связана с совместностью её коммутативного образа, получено достаточное условие совместности в виде обобщения теоремы о неявном отображении на формальные грамматики, содержащие произвольное число уравнений. Доказано, что если для коммутативного образа системы ранг матрицы Якоби коммутативного образа системы уравнений в начале координат максимален, то исходная система некоммутативных уравнений имеет единственное решение в виде ФСР.

Ключевые слова: системы полиномиальных уравнений, некоммутативные переменные, формальный степенной ряд, коммутативный образ, матрица Якоби.

УДК: 519.682

DOI: 10.17223/2226308X/12/55



Реферативные базы данных:


© МИАН, 2024