Аннотация:
Продолжено исследование систем некоммутативных полиномиальных уравнений, которые интерпретируются как грамматики формальных языков. Такие системы решаются в виде формальных степенных рядов (ФСР), выражающих нетерминальные символы через терминальные символы алфавита и рассматриваемых как формальные языки. Всякому ФСР поставлен в соответствие его коммутативный образ, который получается в предположении, что все символы обозначают коммутативные переменные, принимающие значения из поля комплексных чисел. В продолжение исследований совместности систем некоммутативных полиномиальных уравнений, которая напрямую не связана с совместностью её коммутативного образа, получено достаточное условие совместности в виде обобщения теоремы о неявном отображении на формальные грамматики, содержащие произвольное число уравнений. Доказано, что если для коммутативного образа системы ранг матрицы Якоби коммутативного образа системы уравнений в начале координат максимален, то исходная система некоммутативных уравнений имеет единственное решение в виде ФСР.