RUS  ENG
Полная версия
ЖУРНАЛЫ // Прикладная дискретная математика. Приложение // Архив

ПДМ. Приложение, 2020, выпуск 13, страницы 21–27 (Mi pdma485)

Дискретные функции

О метрических свойствах множества самодуальных бент-функций

А. В. Куценкоab

a Институт математики им. С.Л. Соболева Сибирского отделения Российской академии наук, г. Новосибирск
b Новосибирский государственный университет

Аннотация: Приводится обзор известных метрических свойств множества самодуальных бент-функций. Бент-функция называется самодуальной, если она совпадает со своей дуальной бент-функцией, и анти-самодуальной, если совпадает с отрицанием своей дуальной. Приводится полный спектр расстояний Хэмминга между самодуальными бент-функциями из класса Мэйорана  — МакФарланда. Даются результаты, касающиеся характеризации булевых функций, находящихся на максимально возможном удалении от множества самодуальных бент-функций. Описаны группы автоморфизмов множеств самодуальных и анти-самодуальных бент-функций от $n$ переменных, автоморфизмы множества булевых функций от $n$ переменных, которые меняют местами множества самодуальных и анти-самодуальных бент-функций, изометричные отображения, сохраняющие неизменным отношение Рэлея каждой булевой функции от $n$ переменных. Даётся характеризация всех изометричных отображений, сохраняющих максимальную нелинейность и расстояние Хэмминга между каждой бент-функций и дуальной к ней.

Ключевые слова: булева функция, самодуальная бент-функция, расстояние Хэмминга, изометричное отображение, метрическая регулярность, группа автоморфизмов, отношение Рэлея.

УДК: 519.7

DOI: 10.17223/2226308X/13/5



© МИАН, 2024