Дискретные функции
Cryptographic properties of a simple S-box construction based on a Boolean function and a permutation
D. A. Zyubinaabc,
N. N. Tokarevaab a Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk
b Novosibirsk State University
c JetBrains Research
Аннотация:
We propose a simple method of constructing S-boxes using Boolean functions and permutations. Let
$\pi$ be an arbitrary permutation on
$n$ elements,
$f$ be a Boolean function in
$n$ variables. Define a vectorial Boolean function
$F_{\pi}: \mathbb{F}_2^n \to \mathbb{F}_2^n$ as $F_{\pi}(x) = (f(x), f(\pi(x)), f(\pi^2(x)), \ldots, f(\pi^{n-1}(x)))$. We study cryptographic properties of
$F_{\pi}$ such as high nonlinearity, balancedness, low differential
$\delta$-uniformity in dependence on properties of
$f$ and
$\pi$ for small
$n$.
Ключевые слова:
Boolean function, vectorial Boolean function, S-box, high nonlinearity, balancedness, low differential
$\delta$-uniformity, high algebraic degree.
УДК:
519.7
Язык публикации: английский
DOI:
10.17223/2226308X/13/13