Аннотация:
Пусть $G$ — конечная группа, $\sigma=\{\sigma_i \mid i\in I\}$ — некоторое разбиение множества всех простых чисел $\mathbb{P}$ и $\Pi$ — подмножество множества $\sigma$. Множество $\mathcal{H}$ подгрупп из $G$ называется полным холловым$\Pi$-множеством в $G$, если $\mathcal{H}$ содержит в точности одну холлову $\sigma_i$-подгруппу из $G$ для каждого такого
$\sigma_i\in\Pi$, что $\sigma_i\cap\pi(G)\ne\varnothing$. Мы также говорим,
что $G$ является: $\Pi$-полной, если $G$ обладает полным холловым$\Pi$-множеством; $\Pi$-полной группой силовского типа, если для всякого
$\sigma_i\in\Pi$ каждая подгруппа $E$ группы $G$ является $D_{\sigma_i}$-группой, т. е. $E$ содержит холлову $\sigma_i$-подгруппу $H$ и каждая $\sigma_i$-подгруппа из $E$ содержится в некоторой сопряженной с $H$ подгруппой $H^x$ ($x\in E$). В данной работе мы исследуем свойства конечных $\Pi$-полных групп. Работа продолжает исследования статьи [1].