We kindly ask all participants, including remote ones and those watching recorded videos, to register at this link.
The seminar covers both classical results (e.g., the Rashevsky-Chow theorem and the
Pontryagin maximum principle) and new directions (Gromov's theorem on nilpotent
approximation and the Nagano-Sussmann orbit theorem). Participants will gain a
comprehensive understanding of the geometric and analytical tools underlying sub-Riemannian geometry and their applications.
Program
Below is an extended version of the program, which is unlikely to fit into a single
semester. Therefore, topics 1–3 will be covered in the first semester. If there is
interest among the participants, the seminar is planned to continue into the second
semester with a program that will be a modification of items 4–6, tailored to the
audience's interests.
1. Basics and Motivation
1.1 Nonholonomicity and Frobenius theorem [2].
1.2 Definition of a sub-Riemannian manifold [1].
1.3 Examples: almost Riemannian manifold, isoperimetric problems, and the
Heisenberg group [1], [3].
1.4 Three equivalent definitions of distance (separate text).
1.5 ResNet neural networks [17].
1.6 The Nagano–Sussmann orbit theorem and the Rashevsky-Chow theorem [2].
1.7 Examples. Control of an N-level quantum system using 1- and 2-qubit
transformations (separate text).
1.8 Sub-Finsler and sub-Lorentzian manifolds [11].
2. Geometric Control Theory Machinery
2.1 Necessary condition for optimality — the Pontryagin maximum principle [2], [3].
2.2 Hamiltonian formalism. Lagrangian formalism [2], [3].
2.3 Equations of shortest paths: normal and abnormal geodesics. Extremals on
Heisenberg and Engel groups, Reeds-Shepp car [2].
2.4 Smoothness of normal geodesics. Exponential map [1]
3. Analysis of Extremals
3.1 Existence of shortest paths (Filippov's theorem) [8], [2].
3.2 Local optimality of strictly normal extremals and conjugate points. Example:
Heisenberg group [2].
3.3 Liu-Sussmann example of a strictly abnormal shortest path [12].
3.4 Example of an abnormal extremal that is not optimal on any time subinterval
[14].
3.5 The problem of smoothness of abnormal geodesics [14], [1], [18], [5], [10].
3.6 Hsu's differential inclusion [7].
4. Local Geometry and Asymptotic Analysis
4.1 Privileged coordinates [1], [4].
4.2 The Ball-Box theorem [1], [4].
4.3 Hausdorff dimension of a sub-Riemannian manifold. Hausdorff dimension of the
Heisenberg group [1], [4].
4.4 Carnot groups and Finsler structures on them. Their Hausdorff dimension [11].
4.5 Tangent cone and Gromov's theorem on nilpotent approximation [4], [1].
5. Algebraic Structure and Integrability
5.1 Left-invariant problems on Lie groups. Trivialization of tangent and cotangent
bundles [1].
5.2 Hamiltonian reduction and vertical subsystem. Example: Heisenberg group [1].
5.3 Example: control of nonholonomic mechanical systems, rolling a ball on a plane,
Reeds-Shepp car [2].
5.4 Lie-Poisson bracket on the Lie coalgebra, coadjoint representation orbits,
Casimirs [9], [19].
5.5 Left-invariant equations on Heisenberg, Engel, and Cartan groups, and on the
group SO(3) [16].
5.6 Integrability of equations on all three-dimensional Lie groups, on Engel and
Cartan groups. Integrability on a specific Carnot group with growth vector (2,3,5,6)
[16], [13].
5.7 Examples: classification of equations on three-dimensional Lie groups, geodesic
equations on all these groups, and their integration [1].
6. Miscellaneous
6.1 Pansu's theorem on the differentiability of mappings of Carnot groups [15].
6.2 Popp's volume [1].
6.3 Sub-Laplacians as hypoelliptic operators, Hörmander's condition [6].
6.4 Curvature in sub-Riemannian geometry [14], [1].
References
[1] Agrachev A. A., Barillari D., Boscain U. A Comprehensive Introduction to Sub-Riemannian Geometry. Cambridge University Press, 2019. (Cambridge Studies in Advanced Mathematics, Vol. 181).
[2] Аграчев А. А., Сачков Ю. Л. Геометрическая теория управления. М.: Физматлит, 2004.
[3] Алексеев В. М., Тихомиров В. М., Фомин С. В. Оптимальное управление. М.: Наука, 1979.
[4] Gromov M. Carnot-Carathéodory spaces seen from within. In: Sub-Riemannian geometry, Birkh¨auser, 1996. P. 79–323. (Progress in Mathematics, Vol. 144).
[5] Hakavuori E., Le Donne E. Non-minimality of corners in sub-riemannian geometry // Inventiones mathematicae, 206(3). 2016.
[6] Hörmander L. Hypoelliptic second order differential equations // Acta Mathematica. 1967. Vol. 119. P. 147–171.
[7] Hsu L. Calculus of Variations via the Griffiths formalism, Differential Geometry, 1992, 36, p. 551-589.
[8] Филиппов А. Ф. Дифференциальные уравнения с разрывной правой частью. М.: Наука, 1985. (English translation: Filippov A. F. Differential Equations with Discontinuous Righthand Sides. Kluwer Academic Publishers, 1988).
[9] Кириллов А. А. Лекции по методу орбит. Н.: ИДМИ 2002.
[10] Lokutsievskiy L. V., Zelikin M.I., Derivatives of Sub-Riemannian Geodesics are Lp-Hölder Continuous, ESAIM: COCV, Volume 29, 2023.
[11] Le Donne E. Metric Lie Groups. Carnot-Carath´eodory Spaces from the Homogeneous Viewpoint.
[12] Liu W., Sussmann H. J. Shortest paths for sub-Riemannian metrics on rank-two distributions. AMS, v. 118, n. 564, 1995.
[13] Локуциевский Л. В., Сачков Ю. Л. Об интегрируемости по Лиувиллю субримановых задач на группах Карно глубины 4 и больше // Математический сборник. 2018. Т. 209, № 5. С. 74–119.
[14] Montgomery R. A Tour of Subriemannian Geometries, their Geodesics and Applications. Mathematical Surveys and Monographs, Vol. 91, 2002.
[15] Pansu P. Métriques de Carnot-Carathéodory et quasiisométries des espaces symétriques de rang un // Annals of Mathematics. Second Series. 1989. Vol. 129, No. 1. P. 1–60.
[16] Сачков Ю.Л. Введение в геометрическую теорию управления. – М.: URSS, 2021, 160 C.
[17] Scagliotti A. Deep learning approximation of diffeomorphisms via linear-control systems // Mathematical Control and Related Fields, 2023, 13(3): 1226-1257. arXiv:2110.12393
[18] Chitour Y., Jean F., Monti R., Rifford L., Sacchelli L., Sigalotti M., Socionovo A. Not all sub-Riemannian minimizing geodesics are smooth, 2025, arXiv:2501.18920
[19] Больсинов А. В., Фоменко А. Т. Интегрируемые гамильтоновы системы. Геометрия, топология, классификация. Издательский дом «Удмуртский университет», 1999.
RSS: Forthcoming seminars
Seminar organizer
Lokutsievskiy Lev Vyacheslavovich
Organizations
Steklov Mathematical Institute of Russian Academy of Sciences, Moscow Steklov International Mathematical Center |