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Dedicated to the memory of Professor G. M. Goluzin
(1906-1952)

ON THE GOODMAN CONJECTURE
AND RELATED FUNCTIONS OF
SEVERAL COMPLEX VARIABLES

© A.Z. Grinshpan

Abstract. The principal coefficient problem for p-valent functions, the Goodman conjec-
ture, is considered for polynomial compositions. In this case, the problem is reduced to a
coefficient conjecture for functions of several complex variables related to univalent func-
tions. The proof is based on the Lyzzaik-Styer determinant theorem. Some advantages
of the equivalent conjecture are discussed. ’

§1. Introduction

A function f(z) which is regular or meromorphic in a region B is said to be p-valent
in B (p € N) if the equation f(z) = w has at most p roots in B for each complex w.
Let V, be the class of functions f(z), f(0) = 0, that are regular and p-valent in the
unit disk D : 2| < 1. '

It has been known since 1936 that the following bound holds true for any natural
numbers p and n and any function f in V; having at most ¢ zeros (¢ < p):

g ,
Hf}al < C0) Y {f min? T (1)
m=1
here C(p) depends only on p. Here and in what follows {f}, denotes the nth Taylor
coefficient of a function f about 0. The order of magnitude occurring in (1), which
is due to Littlewood [13] for p = 1 and to Biernacki [3; 4, Chapter 1] for p > 2, is
best possible. It took nearly 70 years to show (with the participation of many eminent
analysts of our century) that for p = 1 (the case of univalent functions) the number
C(p) in (1) can be replaced by 1. In this case, equality in (1) occurs if and only if
f(2)/{f} is the Kaebe function K(z) = z/(1-z)? or one of its rotations. Concerning
the famous Bieberbach conjecture on the Taylor coefficients of univalent functions
(1916) and its proof, see de Branges’s paper [5] and also {2]. As for sharp coefficient
estimates for p > 2, the problem appears to be substantially more complicated and
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remains unsolved. In the present paper we consider the principal coefficient conjecture
for p-valent functions in the case of polynomial compositions, as well as some related
results and ideas.

§2. Some resulfs of Goluzin

Let 3°, be the class of functions F(z) = z7P(1 + auz +...), F(z) # 0, that are
meromorphlc and p-valent in D. In 1940, Goluzin [7] proved the following coeffic1ent
inequality:

> n =P FEPLE < )
n=1
for every function F € 3, (p € N) and any A > 0.

This result, a nice generahzatlon of the Prawitz inequality for univalent functions
(1927/28), is one of the important contributions to the theory of multivalent functions.
The case where X = 1 is known as the Goluzin area theorem for p-valent functions.
For p = 1, this. theorem coincides with the classic outer area theorem (1914) (see the
books by Goluzin [8], Lebedev [12], and Milin [16] for more details).

With the help of inequality (2), Goluzin established sharp estimates for the initial
coefficients in the class Ep (p 2 2). On this basis, he obtained similar estimates in the
class S, consisting of the normalized functions f in V;, {f}, = 1, that have a zero of
‘multiplicity p at the origin. In particular, Goluzin proved that '

[{f}p41l < 2p NON

for all p > 2, provided that f(z) = 2* + {f}p+1221! + ... € S,. Several years later,
inequalities (1), the statement of the Bieberbach conjecture, and estimate (3) helped
Goodman to formulate his principal coefficient conjecture for p-valent functions.

Equality in (3) is realized only by the function K? and its rotations. We note that this
function also plays an extremal role in other Goluzin’s estimates for p-valent functions
(see [7; 8, Chapter 1}). In the papers [17] by Spencer and [1] by Alenitsyn, inequality
(3) and generalizations of the Goluzin area theorem were studied for mean p-valent
functions. »

§3. The Goodman conjecture

In 1948, Goodman conjectured (see [9]) that the sharp upper bound for {{f},| for
a p-valent function f € V; can be expressed as a certain linear combination of the
first p coefficients, namely,

2k(n
|{f}|_2(p e e e LT B O

for n > p.

Later, Goodman showed that, if correct, this upper bound is sharp for every nonzero
collection {{{f}11,.--,1{f}»sl}, where f(z) is a polynomial in K(z) of degree p. The
Goodman conjecture is a generalization of the Bieberbach conjecture for p > 2.
Clearly, if {f}; =... = {f}p-1 =0 and n = p+1, then (4) coincides with the Goluzin
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estimate (3). Until the present time, even the simplest general case of (4) with p = 2
and n = 3 has been neither proved nor disproved. However, some supporting evidence
has been collected for the Goodman conjecture (the details and references can be
found in [11] and [14]). Lyzzaik and Styer [15] studied the Goodman conjecture in
the special case of polynomials in univalent functions. For such compositions, they
showed that the conjecture is equivalent to a collection of determinant inequalities
for the coefficients of powers of normalized univalent functions. We use the result
from [15] in the present paper to reduce the problem to some coefficient conjecture
for functions of several complex variables. Then we discuss some advantages of our
equivalent conjecture.

It should be mentioned that Goodman also proposed another improvement of
bounds (1) for the class V,. This approach involved the locatxon of the zeros of
p-valent functions (see [10])

84. The Lizzaik—Styer determinant theorem

| Let M, be the set of all functions f € V, such that f = Poy, where P is a polynomial
of degree at most p and ¢ is a function of class S = Si; see [15]. An attempt to study
the Goodman conjecture merely for polynomial compositions f € M,,

f(2) =Y bmp™(2), (5)
m=1

demonstrates the difficulty of the problem. The desirable result is far from being
a consequence of the truth of the Bieberbach conjecture, unless f is a monomial

(b =...=by—1 =0, b, #0 in (5) ). We denote
| (W (e
E(p,p k) = {¥ }:k+1 {¥ :}k+1 {‘P"}:k+1 ’ ©)
O N L W

where p € S and 1 < k < p < n. For k = p we have E(p,p,k,n}) = {goP}n. fep=K,
then

2k(n + p)! :
(p+E)M(p - k)l(n — p—1)l(n? - k%)’

|E(p,p, kyn)| =
(see Goodman [9]).

Theorem 1 [15]. Let n,p € N, n > p. The following assertions are equivalent.

a) |E(¢,p, k,n)| < |E(K,p, k,n)| for-every ¢ € S and every integer k, 1 < k < p,
where E is defined by (6).
b) The Goodman conjecture (4) is true for all functions f € M,.
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§5. An equivalent conjecture for
functions of
several complex variables

Theorem 2. The following assertions are equivalent.
a) The Koebe function K(z) maximizes the modulus of the coeff cient of each term

of the form
r—1
[ 5™ (p+k<n,neN)
m==]

of the Taylor series about (0,... ,0) in the class of all functions ‘

P
®(z1,...,2) = H ‘Pk(zm) H (ZEMEIER)

m=1 1<v<pusp
(zm € Dym =1,...,p), @)

where p,k € N and (z) is a function of class S. .
b) The Goodman conjecture (4) is true for all polynomial compositions f €

UPEN M

Proof. Letpc S and n,p, k € N(n > p+ k). We assume that p > 2. Then (6) implies
that E(p,k + p—1,k,n) is equal to the sum of all terms of the form

LD Y e e T {077 ),

where (41, ... ,1,) is a permutation of the indices (%,... ,k+p—1), and I is the number ‘
of inversions of the permutation k£ — 7;,... ,k+p—1— 3.
Using the variables z,... ,2, € D, we get

E(p,k+p—1,kn) -

-{ ¥ 1)’+P-‘Hso'm(z

('l 1 )'P)

?

}k+l,...,k+p—l,n

where the notation {F(z,... ,z,,)}m,.,. n, Stands for the coefficient of the term
P —1 znm of the Taylor series about (0, ... ,0) of a function F of p complex variables
Zyy-e 3 %m-

From (8) we deduce that

|E(¢:k+p_1akvn)|
| Loga) o ea)
.= 14 ( Zm) . _ :
H L) | [
1 ow(zp) ... ¢ Yz) k+1,... k+p—1,n
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Hence, using (7) and the formula for the Vandermonde determinant, we obtain

|E((Pa k+ p— 1, k) n)l = l{é(zl’ e 1ZP)}k+l,...,k+p—l,n| (P 2> 2)

If p =1, then @ = o* and |{®}a| = |E(p, k, k,n)|.

Now, Theorem 1 allows us to complete the proof of Theorem 2. o

It is easily seen that the extremal property of the Koebe function mentioned in
Theorem 2 (if valid) is much deeper than the statement of the Bieberbach conjecture.
So, we do not expect that the approaches developed for p = 1 are still effective for
p > 2. At the same time, the above coefficient problem for the functions (7) is more
convenient for investigation with the help of the traditional methods than the con]ecture
(4) for polynomial compositions or condition (a) in Theorem 1.

i) Local properties of the Koebe function in the coefficient space. Let ¢(z) = K(z)+
" 8(z), and let r € (0,1); it is assumed that §(z) is small for |z| < r. Also, let p,k € N,
|zm| < 7 Km = K(2zm), 2and &, = 6(2m) (m = 1,... ,p). Equation (7) implies that

@(zl,...,zp)=ﬁK,':, H (K,,—K.,)[1+¢1+(I>2]+o(i|5m|2),

1<v<pu<lp m=1
where
¢, = Ql(zl) ZP)
§,—6
i3 Ttk
1<v<pu<lp K“ "
P
=o( % lami),
m=1
and

Qz = @2(21,... ,zp)

8,6, kk~D
=2 3 K:Ku ( 2

m=1

1Y Y g (fsh)

m=11<v<ulyp

1< <,f<p
()£ 1)

=o(§;15m|2).

This representation and Theorem 2 allow us to investigate the Goodman conjecture
for polynomial compositions locally for a given variation of the Koebe function. For
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the details concerning univalent variations of the Koebe function (in the case where
p = k = 1), see, e.g., [16, Chapter 3]. Also, see Gel'fer’s paper {6] on a variational
approach to the coefficient problem for p-valent functions.

ii) Coefficient estimates for the functions (7) with ¢ representable in the form of a
Stieltjes integral. Goluzin (see [8, Chapter 11]) and other authors considered various
classes of analytic functions (z) described in terms of a Stieltjes integral

b

/ o(z,t)de(t) (2 € D),

where a,b, and g(z,t) are fixed, and o(t) is a monotone nondecreasing function on
the interval {a, b}, with «(b) - a(a) = 1 (for instance). We say that these functions ¢
are of G-S type.

As is well known, the statement of the Bieberbach comjecture was first verified
for certain functions of G-S type (starlike functions (1921), typically-real functions
(1931-1932), etc. (the proofs can bé found, e.g, in [8, Chapter 4]) and then, many
years later, for the class S (1984). The reason is that the extremal properties of the
Koebe function can be derived for certain functionals on a set of monotonic functions
with the help of basic analysis only.

From this point of view, the above Taylor coefficients of the functions (7) seem to
be suitable functionals, provided that each ¢ belongs to a given set of G-S type func-
tions containing K. Here functions ¢ are not necessarily univalent. So, the coefficient
condition (a) in Theorem 2 might be used for testing the Goodman conjecture on the
functions of G-S type like it was done in the case of the Bieberbach conjecture.

ili) Reduction of the problem to that in terms of some logarithmic coefficients.
Univalent functions satisfy a number of logarithmic inequalities of geometric nature,
which are effective in applications (see the books [8, 12}, and [16] for details). However,
it is very difficult to relate these inequalities to conjecture (4) (in the polynomial case),
or to condition (a) in Theorem 1. At the same time, equation (7) with ¢ € S can be
rewritten in the following exponential form

@(Zl,. . ,Zp)
P
= H zF (zp — zv) exp {k Z log ——= go( m) Z U(z,,,z,,)}
m=1 1<v<u<lp m=1 1<v<ulp
where

U(z,() = log _‘/_’_(___)__%(C_)_

Theorem 2 shows that the logarithmic and the Grunsky coefficients (the Taylor coef-
ficients of U(z,()) of a univalent function ¢ might be used for reducing the Goodman
conjecture for polynomial compositions to a “logarithmic” problem in a natural way.
Actually, we mean a possible extension of Milin’s exponentiation theory [16; Chapters
2, 3] to the case of p > 2 variables. We remind the reader that the exponential approach
turned out to be of major importance in the proof of the Bieberbach conjecture (see

(SD-
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