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Алгебра и анализ 
Том 9 (1997), вьш. 3 

Dedicated to the memory of Professor G. M. Goluzin 
(1906-1952) 

ON THE GOODMAN CONJECTURE 
AND RELATED FUNCTIONS OF 
SEVERAL COMPLEX VARIABLES 

© A. Z. Grinshpan 

Abstract. The principal coefficient problem for p-valent functions, the Goodman conjec­
ture, is considered for polynomial compositions. In this, case, the problem is reduced to a 
coefficient conjecture for functions of several complex variables related to univalent func­
tions. The proof is based on the Lyzzaik-Styer determinant theorem. Some advantages 
of the equivalent conjecture are discussed. 

§1. Introduction 

A function f(z) which is regular or meromorphic in a region В is said to be p-valent 
in В (j> 6 N) if the equation f{z) = w has at most p roots in В for each complex w. 
Let Vp be the class of functions f(z), /(0) = 0, that are regular and p-valent in the 
unit disk D : \z\ < 1. 

It has been known since 1936 that the following bound holds true for any natural 
numbers p and n and any function / in Vp having at most q zeros (q < p): 

|{/}»| < C(P) J2 K/W»"-1; (1) 
m = l 

here C(p) depends only on p. Here and in what follows {/}„ denotes the nth Taylor 
coefficient of a function / about 0. The order of magnitude occurring in (1), which 
is due to Littlewood [13] for p = 1 and to Biernacki [3; 4, Chapter 1] for p > 2, is 
best possible. It took nearly 70 years to show (with the participation of many eminent 
analysts of our century) that for p = 1 (the case of univalent functions) the number 
C(p) in (1) can be replaced by 1. In this case, equality in (1) occurs if and only if 
f(z)/{f}i is the Koebe function K(z) = z/(l-z)2 or one of its rotations. Concerning 
the famous Bieberbach conjecture on the Taylor coefficients of univalent functions 
(1916) and its proof, see de Branges's paper [5] and also [2]. As for sharp coefficient 
estimates for p > 2, the problem appears to be substantially more complicated and 
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remains unsolved. In the present paper we consider the principal coefficient conjecture 
for p-valent functions in the case of polynomial compositions, as well as some related 
results and ideas. 

§2. Some results of Goluzin 

Let J2P
 b e Л е c l a s s o f functions F(z) = z~p(l + оцг+ ...), F(z) ф 0, that are 

meromorphic and p-valent in D. In 1940, Goluzin [7] proved the following coefficient 
inequality: 

oo 

£(n-Ap) |{^F(z ) ] A }J 2 <Ap (2) 
n=i 

for every function F € £ p (p e N) and any A > 0. 
This result, a nice generalization of the Prawitz inequality for univalent functions 

(1927/28), is one of the important contributions to the theory of multivalent functions. 
The case where A = 1 is known as the Goluzin area theorem for p-valent functions. 
For p = 1, this, theorem coincides with the classic outer area theorem (1914) (see the 
books by Goluzin [8], Lebedev [12], and Milin [16] for more details). 

With the help of inequality (2), Goluzin established sharp estimates for the initial 
coefficients in the class 53p (p > 2). On this basis, he obtained similar estimates in the 
class Sp consisting of the normalized functions / in Vp, {f}p = 1, that have a zero of 
multiplicity p at the origin. In particular, Goluzin proved that 

| { / U i I < 2 p (3) 

for all p > 2, provided that f(z) = zr + {f}P+izp+1 + ... e Sp. Several years later, 
inequalities (1), the statement of the Bieberbach conjecture, and estimate (3) helped 
Goodman to formulate his principal coefficient conjecture for p-valent functions. 

Equality in (3) is realized only by the function Kp and its rotations. We note that this 
function also plays an extremal role in other Goluzin's estimates for p-valent functions 
(see [7; 8, Chapter 1]). In the papers [17] by Spencer and [1] by Alenitsyn, inequality 
(3) and generalizations of the Goluzin area theorem were studied for mean p-valent 
functions. 

§3. The Goodman conjecture 

In 1948, Goodman conjectured (see [9]) that the sharp upper bound for |{/}„| for 
a p-valent function f € Vp can be expressed as a certain linear combination of the 
first p coefficients, namely, 

\ш*±ь+№-№-£т*-*)т* <4) 

for n> p. 
Later, Goodman showed that, if correct, this upper bound is sharp for every nonzero 

collection {|{/}i|,.-- ,|{/}Р |}, where f(z) is a polynomial in K(z) of degree p. The 
Goodman conjecture is a generalization of the Bieberbach conjecture for p > 2. 
Clearly, if {/}i = ... = {/}p_i = 0 and n = p+1, then (4) coincides with the Goluzin 
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estimate (3). Until the present time, even the simplest general case of (4) with p = 2 
and n = 3 has been neither proved nor disproved. However, some supporting evidence 
has been collected for the Goodman conjecture (the details and references can be 
found in [11] and [14]). Lyzzaik and Styer [15] studied the Goodman conjecture in 
the special case of polynomials in univalent functions. For such compositions, they 
showed that the conjecture is equivalent to a collection of determinant inequalities 
for the coefficients of powers of normalized univalent functions. We use the result 
from [15] in the present paper to reduce the problem to some coefficient conjecture 
for functions of several complex variables. Then we discuss some advantages of our 
equivalent conjecture. 

It should be mentioned that Goodman also proposed another improvement of 
bounds (1) for the class Vp. This approach involved the location of the zeros of 
p-valent functions (see [10]). 

§4. The Lizzaik—Slyer determinant theorem 

Let Mp be the set of all functions f &VP such that / = Poip, where P is a polynomial 
of degree at most p and y> is a function of class S = Si; see [15]. An attempt to study 
the Goodman conjecture merely for polynomial compositions / € Mp, 

f(z) = J2 Wm(*), (5) 
ra=l 

demonstrates the difficulty of the problem. The desirable result is far from being 
a consequence of the truth of the Bieberbach conjecture, unless / is a monomial 
(bj = .. . = bp_i = 0, Ър ф 0 in (5) ). We denote 

E(ip,p,k,n) = 

to"), {<pk+% ••• {<pp}P 

(6) 

where <p 6 S and 1 < к < p < n. For к = p we have E(ip,p, k, n) — {<pp}n- If V = K, 
then 

2k(n + p)! 
№ , Р , М ) | - ^ + ] Ь)!(р_]Ь)!(п_р_1) !(п2_42)-

(see Goodman [9]). 

Theorem 1 [15]. Let n,peN, n> p. The following assertions are equivalent. 
a) \E(ip,p, k,n)\ < \E(K,p, k,n)\ for every <p e S and every integer k,l<k<p, 

where E is defined by (6). 
b) The Goodman conjecture (4) is true for all functions f e Mp. 
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§5. An equivalent conjecture for 
functions of 

several complex variables 

Theorem 2. The following assertions are equivalent 
a) The Koebe Junction K(z) maximizes the modulus of the coefficient of each term 

of the form 
p-i 

г р " П г - + т (Р + к<п,пеН) 
m = l 

of the Taylor series about (0,... ,0) in the class of all Junctions 

p 

#(*!, , Zp) = Yl ¥>*(Zm) П MZ") ~ V(Z")J 
m = l 1^"<C<P 

( z m €-D;m=l , . . . ,p), (7) 
where p, к e N and ip(z) is a Junction of class S. 

b) The Goodman conjecture (4) b true for all polynomial compositions f e 
UPeNMp-

Proof. Let (p e S and n,p, к e N(n > p + k). We assume that p > 2. Then (6) implies 
that E(<p,k + p—l,k,n) is equal to the sum of all terms of the form 

( - l ) ^ - i { ^ } f c + 1 . . . { ^ - 1 } f c + j i _ l { ^ } n ) 

where (г ь . . . ,гр) is a permutation of the indices (k,... ,k+p-l), and / i s the number 
of inversions of the permutation к —> i i , . . . , ifc + p — 1 -* ip. 

Using the variables zi, . . . , zp e D, we get 

E(tp,k+p-l,k,n) " 

= { £ (-1)/+p_1 П *'-(*•.)} 
where the notation {F(zi,... ,*,,)}„,,...,„, stands for the coefficient of the term 
Пт=1 г т" °f ш е Taylor series about (0,... , 0) of a function F of p complex variables 
zl > • • • i г т • 

From (8) we deduce that 

\E(ip,k + p-l,k,n)\ 

П A**) 
ro=l 

1 <p(Zl) ... ^ " V O 

1 4>{zP-i) ... ^ - , ( « P - i ) 
1 *>(*„) ... <р>-\г,) *+l,...,fc+p-l,n 
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Hence, using (7) and the formula for the Vandermonde determinant, we obtain 

' \E(tp,k + p-l,k,n)\ = |{Ф(гь... ,zp)}k+i jt+p-i,„| (p > 2). 

If p = 1, then Ф = </ and |{Ф}„| = \Е(<р,к,к,п)\. 
Now, Theorem 1 allows us to complete the proof of Theorem 2. • 
It is easily seen that the extremal property of the Koebe function mentioned in 

Theorem 2 (if valid) is much deeper than the statement of the Bieberbach conjecture. 
So, we do not expect that the approaches developed for p = 1 are still effective for 
p > 2. At the same time, the above coefficient problem for the functions (7) is more 
convenient for investigation with the help of the traditional methods than the conjecture 
(4) for polynomial compositions or condition (a) in Theorem 1. 
i) Local properties of the Koebe function in the coefficient space. Let <p(z) = K{z) + 
6(z), and let г e (0,1); it is assumed that 8{z) is small for \z\ < r. Also, let p, к 6 N, 
\zm\ < r, Km — K(zm), and Sm = S(zm) (m = 1,... ,p). Equation (7) implies that 

Ф(*ь . . . , * , ) = £ [ * * П ( * м - В Д 1 + * 1 + Ф а ] + ° ( Е 1 * т | а ) , 
m=l Ki/<u<p ^m=l ' 

where 

$ i = $ 1 ( 2 1 , . . . ,zp) 

f>m X~^ &'a — &v 

ra=l " m 1<^<,«<р " " K" ro=l Л т \< - ' ' 

= o(.Ei«-i). 
4 m = l ' 

and 

Ф2 = Ф2(гь . . . ,zp) 

a ул S^Sy k(k - 1) -А 6^_ 
^ K„K„ 2 ^ К2 

1<1/</1<р й " m = l m 

m = l l < i / < / i < p > *- f 

2 i<k<, \K^KJ\Ks-Kv.) 
1<"'</<Я 

= o(±\smA 
Ч т = 1 / 

This representation and Theorem 2 allow us to investigate the Goodman conjecture 
for polynomial compositions locally for a given variation of the Koebe function. For 
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the details concerning univalent variations of the Koebe function (in the case where 
p = к = 1), see, e.g., [16, Chapter 3]. Also, see Gel'fer's paper [6] on a variational 
approach to the coefficient problem for p-valent functions. 

ii) Coefficient estimates for the functions (7) with у representable in the form of a 
Stieltjes integral. Goluzin (see [8, Chapter 11]) and other authors considered various 
classes of analytic functions tp(z) described in terms of a Stieltjes integral 

ь 
jg(z,t)da(t) (z&D), 
a 

where a, b, and g(z, t) are fixed, and a(t) is a monotone nondecreasing function on 
the interval [a, b], with a(b) - a(a) = 1 (for instance). We say that these functions <p 
are of G-S type. 

As is well known, the statement of the Bieberbach conjecture was first verified 
for certain functions of G-S type (starlike functions (1921), typically-real functions 
(1931-1932), etc. (the proofs can be found, e.g., in [8, Chapter 4]) and then, many 
years later, for the class S (1984). The reason is that the extremal properties of the 
Koebe function can be derived for certain functionals on a set of monotonic functions 
with the help of basic analysis only. 

From this point of view, the above Taylor coefficients of the functions (7) seem to 
be suitable functionals, provided that each у belongs to a given set of G-S type func­
tions containing K. Here functions y> are not necessarily univalent. So, the coefficient 
condition (a) in Theorem 2 might be used for testing the Goodman conjecture on the 
functions of G-S type like it was done in the case of the Bieberbach conjecture. 

iii) Reduction of the problem to that in terms of some logarithmic coefficients. 
Univalent functions satisfy a number of logarithmic inequalities of geometric nature, 
which are effective in applications (see the books [8,12], and [16] for details). However, 
it is very difficult to relate these inequalities to conjecture (4) (in the polynomial case), 
or to condition (a) in Theorem 1. At the same time, equation (7) with tp s S can be 
rewritten in the following exponential form 

Ф(г ь . . . ,zp) 

= Г К П ( ^ - ^ e x p { f c £ l o g ^ + £ Щж.нх.)}, 
m = l 1<K<M<P m=1 m 1<"</*<P 

where 

Theorem 2 shows that the logarithmic and the Grunsky coefficients (the Taylor coef­
ficients of U(z, ()) of a univalent function <p might be used for reducing the Goodman 
conjecture for polynomial compositions to a "logarithmic" problem in a natural way. 
Actually, we mean a possible extension of Milin's exponentiation theory [16; Chapters 
2, 3] to the case of p > 2 variables. We remind the reader that the exponential approach 
turned out to be of major importance in the proof of the Bieberbach conjecture (see 
[5]). 
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