Mirotin Adolf Ruvimovich
|
Professor
|
Doctor of physico-mathematical sciences (2001)
|
Speciality:
01.01.01 (Real analysis, complex analysis, and functional analysis)
Birth date:
5.05.1952
E-mail:
Keywords: topological group,
topological semigroup,
Lie semigroup,
invariant measure,
representation,
semicharacter,
Fourier transform,
Laplace transform,
Hilbert transform,
Stieltjes transform,
functional calculus,
joint spectra,
Banach algebra,
Toeplitz operator,
Hankel operator,
semigroup of operators.
UDC: 517.986.7,
517.983.23,
517.986,
517, 519.53,
517.984.5,
517.984.3
MSC: 22D,
28A,
43-XX,
43A53,
47A60,
47D03,
43A05,
22A20
Subject: Abstract Harmonic Analysis, Operator Theory.
Main publications:
-
A. R. Mirotin, “Invariant Measure Semigroup Contains an Ideal which is Embeddeble in Groupе”, Semigroup Forum, 59:3 (1999), 354–361
-
A. R. Mirotin, “Positive Semicharacters of Lie Semigroups”, Positivity, 3:1 (1999), 23–31
-
A. R. Mirotin, “On the Extensions of Infinite-Dimensional Representations of Lie Semigroups”, Int. J. Math. Math. Sci., 29:4 (2002), 195–207
-
A. R. Mirotin, “Criteria of Analyticity of Subordinate Semigroups”, Semigroup Forum, 78:2 (2009), 262–275
-
A. R. Mirotin, “On the essensial spectrum of $\lambda$-Toeplitz operators over compact Abelian groups”, J. Math. Anal. Appl., 424:2 (2015), 1286–1295
Publications in Math-Net.Ru
© , 2024