Speciality:
01.01.06 (Mathematical logic, algebra, and number theory)
E-mail: ,
Keywords: o-minimal theory, NIP theory, ordered groups, o-stable theory, Hrushovski's construction, strongly minimal theory
UDC: 512.54.03, 510.67, 512.545 MSC: 03C64
Subject:
Investigation of ordered structures of the following theories: weakly o-minimal, quasi-o-minimal, and o-stable.
Main publications:
\begin{thebibliography}{9}
\Bibitem{1}
\by John T. Baldwin
Viktor V. Verbovskiy
\paper Towards a finer classification of strongly minimal sets
\paperinfo https://doi.org/10.1016/j.apal.2023.103376
\jour Annals of Pure and Applied Logic
\yr 2024
\vol 175
\issue 2
\Bibitem{2}
\by Viktor V. Verbovskiy
\paper On definability of types and relative stability
\paperinfo https://doi.org/10.1002/malq.201600084
\jour Mathematical Logic Quarterly
\yr 2019
\vol 65
\issue 3
\pages 332-346
\Bibitem{3}
\by Viktor V. Verbovskiy
\paper O-stable ordered groups
\paperinfo https://doi.org/10.3103/S105513441201004X
\jour Siberian Advances in Mathematics
\yr 2012
\vol 22
\issue 3
\pages 50-74
\Bibitem{4}
\by Bektur S. Baizhanov
Viktor V. Verbovskiy
\paper O-Stable Theories
\paperinfo https://doi.org/10.3103/S105513441201004X
\jour Algebra and Logic
\yr 2011
\vol 50
\pages 211-225
\Bibitem{5}
\by Oleg V. Belegradek
Viktor V. Verbovskiy
Frank O. Wagner
\paper Coset-minimal groups
\paperinfo https://doi.org/10.1016/S0168-0072(02)00084-2
\jour Annals of Pure and Applied Logic
\yr 2003
\vol 121
\issue 2-3
\pages 113-143