RUS  ENG
Full version
PEOPLE
Vassiliev Victor Anatolievich
Vassiliev Victor Anatolievich
Member of the Russian Academy of Sciences
Doctor of physico-mathematical sciences (1992)

Speciality: 01.01.04 (Geometry and topology)
Birth date: 10.04.1956
Phone: +7 (495) 151 26 29
Fax: +7 (499) 135 05 55
E-mail:
Keywords: singularity theory, topology, combinatorics, complexity theory, integral geometry, Picard–Lefschetz theory, partial differential equations, symplectic geometry and topology, complex analysis.
UDC: 515.1, 517.4, 515.164, 512.73
MSC: 57M25, 58C27, 55R80, 57R45, 68Q25, 32S40, 57M27, 57Q45, 58G16, 58G17, 55T99, 58Kxx, 12Y05, 55S40, 68W30

Subject:

Main results include: 1) A system of invariants of knots, links, and plane curves, stronger than all known polynomial invariants; 2) A universal method of the computation of homology groups of spaces of non-degenerate geometrical objects, producing in particular the knot invariants and numerous comparison theorems of the Smale–Hirsch–Gromov type for spaces of real and complex functions and maps without complicated singularities; 3) Best known (and asymptotically sharp) estimates of the numbers of branchings of algorithms of approximate computation of roots of polynomials 4) "Stratified" version of the Picard–Lefschetz theory for the homology groups of singular manifolds; 5) A proof of the Atiyah–Bott Garding conjecture on the equivalence of the sharpness of the wave front of a hyperbolic operator to the topological Petrovskii condition; an interpretation of these conditions in the terms of the geometry of the front; 6) Multidimensional analogues of the Newton's theorem on the non-integrability of ovals; 7) A construction of multi-dimensional analogues of the Maslov index by the methods of the singularity theory (the "universal complex of singularities"); 8) A calculation of the stable homotopy types of complements of plane arrangements in $\mathbf R^n$, generalizing the Goresky–MacPherson formula for the homology groups of such complements. Other results concern complexity theory of smooth maps, real algebraic geometry, generalized hypergeometric functions, topology of Lie groups, dynamical systems, geometrical combinatorics, potential theory, etc.


Main publications:
  1. V. A. Vassiliev, Complements of discriminants of smooth maps: topology and applications, 2-d extended edition, Translations of Math. Monographs, 98, AMS, Providence, RI, 1994, 268 pp.  mathscinet  zmath; rasshirennyi russkii perevod: V. A. Vasilev, Topologiya dopolnenii k diskriminantam, Fazis, Moskva, 1997, xiv+536 s.  mathscinet
  2. V. A. Vassiliev, Ramified integrals, singularities and lacunas, Math. Appl., 315, Kluwer Academic Publishers, Dorderecht (Netherlands), 1995, xviii+289 pp.  mathscinet  zmath; rasshirennyi russkii perevod: V. A. Vasilev, Vetvyaschiesya integraly, MTsNMO, Moskva, 2000, 432 s.
  3. V. A. Vassiliev, Lagrange and Legendre characteristic classes, 2-d edition, Gordon and Breach Publishers, New York a.o., 1993, 273 pp.  mathscinet  zmath; rasshirennyi russkii perevod: V. A. Vasilev, Lagranzhevy i lezhandrovy kharakteristicheskie klassy, MTsNMO, Moskva, 2000, 312 s.
  4. V. I. Arnold, V. A. Vasilev, V. V. Goryunov, O. V. Lyashko, Osobennosti. I. Lokalnaya i globalnaya teoriya, Itogi nauki i tekhniki. Sovr. probl. matem. Fundam. napr., 6, VINITI, Moskva, 1988, 256 s.  mathnet  mathscinet  zmath; Osobennosti. II. Klassifikatsiya i prilozheniya, Itogi nauki i tekhniki. Sovr. probl. matem. Fundam. napr., 39, 1989, 256 s.  mathnet  mathscinet  zmath; English translation: V. I. Arnold, V. A. Vasil'ev, V. V. Goryunov, O. V. Lyashko, Singularities, Encycl. Math. Sci., 6, 39, Springer-Verlag, Berlin–New York, 1993, 245+233 pp.  mathscinet
  5. V. A. Vassiliev, “Combinatorial formulas for cohomology of spaces of knots”, Moscow Math. J., 1:1 (2001), 91–123  mathnet  mathscinet  zmath

Recent publications

Presentations in Math-Net.Ru

Personal pages:

Organisations:


© Steklov Math. Inst. of RAS, 2024