Специальность ВАК:
01.01.02 (дифференциальные уравнения, динамические системы и оптимальное управление)
E-mail: Ключевые слова: параболическое уравнение,
носитель,
неоднородная плотность,
вырождающееся параболическое уравнение,
режим с обострением,
медленно убывающая начальная функция.
Основные темы научной работы:
Качественная теория вырождающихся параболических уравнений.
Основные публикации:
Tedeev, A. F. Initial-boundary value problems for quasilinear degenerate parabolic equations with damping. The Neumann problem. (Russian) Ukrain. Mat. Zh. 58 (2006), no. 2, 272–282;
translation in Ukrainian Math. J. 58 (2006), no. 2, 304–317.
Afanas'eva, N. V.; Tedeev, A. F. Theorems on the existence and nonexistence of solutions to the Cauchy problem for degenerate parabolic equations with a nonlocal source. (Russian) Ukrain. Mat. Zh. 57 (2005), no. 11, 1443–1464; translation in Ukrainian Math. J. 57 (2005), no. 11, 1687–1711.
Andreucci, Daniele; Tedeev, Anatoli F. Universal bounds at the blow-up time for nonlinear parabolic equations. Adv. Differential Equations 10 (2005), no. 1, 89–120.
Andreucci, D.; Tedeev, A. F.; Ughi, M. The Cauchy problem for degenerate parabolic equations with source and damping. Ukr. Mat. Visn. 1 (2004), no. 1, 1–19; translation in Ukr. Math. Bull. 1 (2004), no. 1, 1–23.
Afanaseva, N. V.; Tedeev, A. F. Fujita-type theorems for quasilinear parabolic equations in the case of slowly vanishing initial data. (Russian) Mat. Sb. 195 (2004), no. 4, 3–22;
translation in Sb. Math. 195 (2004), no. 3–4, 459–478.
Tedeev, A. F. Conditions for the time-global existence and nonexistence of a compact support of solutions of the Cauchy problem for quasilinear degenerate parabolic equations.
(Russian) Sibirsk. Mat. Zh. 45 (2004), no. 1, 189–200; translation in Siberian Math. J. 45 (2004), no. 1, 155–164.
Andreucci, D.; Cirmi, G. R.; Leonardi, S.; Tedeev, A. F. Large time behavior of solutions to the Neumann problem for a quasilinear second order degenerate parabolic equation in domains with noncompact boundary. J. Differential Equations 174 (2001), no. 2, 253–288.
Andreucci, Daniele; Tedeev, Anatoli F. Finite speed of propagation for the thin-film equation and other higher-order parabolic equations with general nonlinearity. Interfaces Free Bound. 3 (2001), no. 3, 233–264.
Andreucci, Daniele; Tedeev, Anatoli F. Sharp estimates and finite speed of propagation for a Neumann problem in domains narrowing at infinity. Adv. Differential Equations 5 (2000),
no. 7–9, 833–860.
Bonafede, S.; Cirmi, G. R.; Tedeev, A. F. Finite speed of propagation for the porous media equation with lower order terms. Discrete Contin. Dynam. Systems 6 (2000), no. 2, 305–314.
Andreucci, Daniele; Tedeev, Anatoli F. A Fujita type result for a degenerate Neumann problem in domains with noncompact boundary. J. Math. Anal. Appl. 231 (1999), no. 2, 543–567.
Andreucci, Daniele; Tedeev, Anatoli F. Optimal bounds and blow up phenomena for parabolic problems in narrowing domains. Proc. Roy. Soc. Edinburgh Sect. A 128 (1998), no. 6,
1163–1180.
Bonafede, S.; Cirmi, G. R.; Tedeev, A. F. Finite speed of propagation for the porous media equation. SIAM J. Math. Anal. 29 (1998), no. 6, 1381–1398.
Skrypnik, I. I.; Tedeev, A. F. Local estimates for the solution of the Cauchy problem for a second-order quasilinear parabolic equation. The weighted case. I. (Russian) Sibirsk.
Mat. Zh. 38 (1997), no. 1, 193–207, iv; translation in Siberian Math. J. 38 (1997), no. 1, 165–178.
Tedeev, A. F. Local and global properties of solutions of the Cauchy–Dirichlet problem for a second-order quasilinear parabolic equation in an unbounded domain. (Russian) Differ. Uravn. 32 (1996), no. 8, 1071–1077, 1149; translation in Differential Equations
32 (1996), no. 8, 1075–1082.