|
VIDEO LIBRARY |
Memorial Conference on Analytic Number Theory and Applications Dedicated to the 130th Anniversary of I. M. Vinogradov
|
|||
|
The discrepancy of the Korobov-Hlawka sequences A. A. Illarionov Khabarovsk Division of the Institute for Applied Mathematics, Far Eastern Branch, Russian Academy of Sciences |
|||
Abstract: Let $$ x^{(k)} = \left( \left\{a_1k/N\right\},\ldots, \left\{a_sk/N\right\} \right)\quad (k=1,\ldots,N) $$ as nodes of multidimensional quadrature formulae. This idea gave rise to a whole direction on the borders of number theory and computational mathematics. Let $$ \mathfrak{D}^{(s)}_{N} \equiv \min_{a\in\Bbb Z_N^s} D_N(a) \underset{s}\ll \frac{\ln^{s-1} N}{N} \ln\ln N $$ (Bykovskii, 2012). It is possible that $$ \mathfrak{D}^{(s)}_{N} \underset{s} \gg \frac{\ln^{s-1} N}{N}. $$ If $$ \mathfrak{D}^{(s)}_{N}\underset{s}\gg\frac{(\ln N)^{(s-1)/2 + \eta(s)}}{N} $$ (Bilyk, Lacey, Vagharshakyan; 2008), where We obtain some results related to the distribution of the sequence $$ \frac{\ln^{s-1}N}{N\ln\ln N} \underset{s} \ll D_N(a) \underset{s}\ll \frac{\ln^{s-1}N}{N}\ln\ln N $$ for “almost all” |