RUS  ENG
Full version
VIDEO LIBRARY

Probability Techniques in Analysis and Algorithms on Networks
November 28, 2025 16:50, St. Petersburg, St. Petersburg State University, Department of Mathematics and Computer Science (14th Line of Vasilievsky Island, 29b), room 217b


Universal frame set for rational functions

A. V. Semenov

Chebyshev Laboratory, St. Petersburg State University, Department of Mathematics and Mechanics

Abstract: For $(\lambda, \mu) \in \mathbb{R}^2$ define a time-frequency shift operator $\pi_{\lambda, \mu} $ on $L^2(\mathbb{R})$ by the rule
$$\pi_{\lambda, \mu} g (t):= e^{2\pi i \lambda t} g(t - \mu), \quad g\in L^2(\mathbb{R}).$$
Now for a fixed $g \in L^2(\mathbb{R})$ and countable $L \subset \mathbb{R}^2$ we define a Gabor system $\mathcal{G}(g, L)$ as follows:
$$\mathcal{G}(g, L) := \{\pi_{\lambda, \mu} g \mid (\lambda, \mu) \in L\}.$$
The system $\mathcal{G}(g,L)$ is a Gabor frame if for some constants $A, B >0$ one has
\begin{equation} A\|f\|^2_2\leq \sum_{(\lambda, \mu) \in L}|(f, \pi_{\lambda, \mu}g)|^2\leq B\|f\|^2_2, \text{ for any } f\in L^2(\mathbb{R}). \end{equation}

Definition. For any $M \in \mathbb{N}$ let $\mathcal{K}_1(M)$ be a class of rational functions of degree $M$, i.e. it has the form
$$g(t) = \sum_{k=1}^{N} {{a_k} \over {(t - i w_k)^{j_k}}}, \text{ where } a_k \in \mathbb{C}, w_k \in \mathbb{C} \setminus i\mathbb{R} \text{ and } \sum_{k=1}^N j_k = M,$$
such that
\begin{equation}\label{eq:defK2} \sum_{k=1}^N a_k e^{2\pi w_k t} {{(2\pi i)^{j_k-1}} \over {(j_k-1)!}} t^{j_k-1} \ne 0 \text{ for any } t <0. \end{equation}

For example, if all the poles of $g$ lie in the upper half-plane, then (\ref{eq:defK2}) is equivalent to the simple condition
\begin{equation} \widehat{g}(t) \ne 0 \text{ for any } t >0. \end{equation}

Definition. For a set $L$ its upper density $D(\Lambda)$ is defined by the formula
$$D(\Lambda) = \lim_{a \to \infty} \sup_{R \in \mathbb{R}} {{\# \{x \in \Lambda \mid x \in [R, R+a]\}} \over {a}}.$$

In the talk we discuss the following universal result:
Theorem 1. For any $\varepsilon >0$ and any $M \in \mathbb{N}$ there exist a set $\Lambda = \Lambda(\varepsilon, M) \subset \mathbb{R}$ of density $D(\Lambda) \leq 1+\varepsilon$ such that the system
$$\mathcal{G}(g, \Lambda\times \mathbb{Z}) := \{e^{2\pi i \lambda t} g(t - n) \mid (\lambda, n) \in \Lambda \times \mathbb{Z}\}$$
is a frame in $L^2(\mathbb{R})$ for any rational function $g \in \mathcal{K}(M)$.

Language: English

* Zoom ID: 812-916-426, Password: mkn


© Steklov Math. Inst. of RAS, 2025