|
|
| VIDEO LIBRARY |
|
Probability Techniques in Analysis and Algorithms on Networks
|
|||
|
|
|||
|
Universal frame set for rational functions A. V. Semenov Chebyshev Laboratory, St. Petersburg State University, Department of Mathematics and Mechanics |
|||
|
Abstract: For $$\pi_{\lambda, \mu} g (t):= e^{2\pi i \lambda t} g(t - \mu), \quad g\in L^2(\mathbb{R}).$$ Now for a fixed $$\mathcal{G}(g, L) := \{\pi_{\lambda, \mu} g \mid (\lambda, \mu) \in L\}.$$ The system \begin{equation} A\|f\|^2_2\leq \sum_{(\lambda, \mu) \in L}|(f, \pi_{\lambda, \mu}g)|^2\leq B\|f\|^2_2, \text{ for any } f\in L^2(\mathbb{R}). \end{equation} Definition. For any $$g(t) = \sum_{k=1}^{N} {{a_k} \over {(t - i w_k)^{j_k}}}, \text{ where } a_k \in \mathbb{C}, w_k \in \mathbb{C} \setminus i\mathbb{R} \text{ and } \sum_{k=1}^N j_k = M,$$ such that \begin{equation}\label{eq:defK2} \sum_{k=1}^N a_k e^{2\pi w_k t} {{(2\pi i)^{j_k-1}} \over {(j_k-1)!}} t^{j_k-1} \ne 0 \text{ for any } t <0. \end{equation} For example, if all the poles of \begin{equation} \widehat{g}(t) \ne 0 \text{ for any } t >0. \end{equation} Definition. For a set $$D(\Lambda) = \lim_{a \to \infty} \sup_{R \in \mathbb{R}} {{\# \{x \in \Lambda \mid x \in [R, R+a]\}} \over {a}}.$$ In the talk we discuss the following universal result: Theorem 1. For any $$\mathcal{G}(g, \Lambda\times \mathbb{Z}) := \{e^{2\pi i \lambda t} g(t - n) \mid (\lambda, n) \in \Lambda \times \mathbb{Z}\}$$ is a frame in Language: English * Zoom ID: 812-916-426, Password: mkn |
|||