RUS  ENG
Full version
VIDEO LIBRARY

Probability Techniques in Analysis and Algorithms on Networks
November 25, 2025 16:50, St. Petersburg, St. Petersburg State University, Department of Mathematics and Computer Science (14th Line of Vasilievsky Island, 29b), room 217b


A Riemann-Hilbert problem for Jacobi-Pineiro orthogonal polynomials

V. Shukla

Shanghai Jiao Tong University

Abstract: We investigate the asymptotic behaviour of Jacobi-Pineiro polynomials of degree $2n$ orthogonal on $[0,1]$ with respect to weights $w_j(x) = x^{\alpha_j}(1-x)^{\beta}$, $j=1,2$ where $\alpha_1,\alpha_2, \beta>-1$, and $\alpha_1-\alpha_2\in (0,1)$. These polynomials are characterized by a Riemann-Hilbert problem for a $3 \times 3$ matrix valued function. We use the Deift-Zhou steepest descent method for Riemann-Hilbert problems to obtain strong uniform asymptotics in the complex plane. The local parametrix around the origin is constructed using Meijer G-functions. We match the local parametrix around the origin with the global parametrix with a double matching, a technique that was recently introduced.

Language: English

* Zoom ID: 812-916-426, Password: mkn


© Steklov Math. Inst. of RAS, 2025