|
ВИДЕОТЕКА |
|
Функция Гурвица-Радона, градуированные алгебры и комбинаторика IV В. Ю. Овсиенко |
|||
Аннотация: How would you continue the sequence 1,2,4,8,...? The obvious answer "16, 32,.." is given by 99 per cent of our colleagues, pure mathematicians. Surprisingly, the rate is much lower among applied mathematicians, physicists and engineers! If you answer "9", you can skip the first lecture... The sequence "1,2,4,8,9,10,12,16,17,18,20,24,25,26,28,32, ..." is identified by the Sloane encyclopedia of integral sequences as the Hurwitz-Radon function evaluated on powers of The main goal of these lectures is to collect various topics related to the Hurwitz-Radon function. We defend the following general idea: whenever the numbers 1,2,4,8 (or perhaps 0,1,3,7) show up as exceptional values in some mathematical problem, one should systematically look for the Hurwitz-Radon function . We will also learn why the quaternions are commutative and the octonions associative. |